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Abstract

The Internet of Things (IoT) revolution is transforming various sectors by enabling seam-

less connectivity and data exchange between devices. However, this rapid expansion

brings significant security challenges due to IoT devices’ constrained resources and di-

verse nature. This thesis presents a comprehensive security framework addressing these

challenges through three interconnected components: detection, identification, and au-

thentication. This integrated approach is crucial for establishing a robust IoT security

framework capable of mitigating various threats effectively.

First, we focus on the detection and identification components by investigating the

multi-user detection (MUD) problem in uplink grant-free non-orthogonal multiple access

(NOMA). This scenario involves identifying the number of active IoT devices and decod-

ing their transmitted data without prior knowledge of device activity levels. The proposed

solution leverages an attention-based bidirectional long short-term memory (BiLSTM)

network, exploiting the temporal correlation of IoT device transmissions. The BiLSTM

network processes the device activation history through forward and reverse-pass LSTMs,

while the attention mechanism highlights crucial activation points. This approach forms

a hierarchical pathway for detecting active IoT devices and performs blind data detection

using complex spreading sequences. The results indicate that this method significantly

outperforms existing benchmark schemes, providing superior detection accuracy and flex-

ibility without requiring prior knowledge of device sparsity or channel conditions.

Then, we investigate the IoT authentication component by introducing an innova-

tive physical-layer authentication scheme tailored for terrestrial IoT devices with limited

computational capabilities. The proposed scheme utilises the inherent properties of the

IoT devices’ transmission model for seed generation and continuous authentication. The

scheme eliminates the need for repeated key generation and verification by verifying ac-

cess time slots and spreading sequences. This approach reduces computational overhead

and enhances security by concealing seed information from potential attackers. The

results demonstrate a near threefold reduction in the misdetection rate of illegitimate
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devices and a false alarm rate close to zero, even with varying numbers of active devices

and signal-to-noise ratios. The scheme boasts at least half the computational cost of

benchmark methods, underscoring its practicality for real-world IoT deployments.

Finally, we address the unique security challenges associated with IoT authentica-

tion in non-terrestrial Low Earth Orbit (LEO) satellite-based IoT networks. Traditional

terrestrial authentication methods, such as Authentication and Key Management for Ap-

plications (AKMA), are inadequate for LEO networks due to their dynamic environment

and frequent handovers. This work proposes a modified AKMA framework incorporating

local key refreshment for decentralised and continuous authentication. This modification

reduces the need for repeated authentication attempts with satellites, mitigating the risks

of man-in-the-middle and spoofing attacks. The framework’s performance is evaluated

in the presence of an illegitimate Unmanned Aerial Vehicle (UAV), showing improved

authentication rates for legitimate devices and reduced misdetection rates for illegiti-

mate devices compared to existing shared key and physical channel-based authentication

schemes. The modified AKMA framework demonstrates its applicability and effectiveness

in enhancing security for LEO satellite-based IoT networks.

In summary, this thesis presents a holistic IoT security framework that effectively

addresses the critical detection, identification, and authentication components. Each

component offers significant advancements in its respective domain, and their integration

forms a comprehensive framework to safeguard IoT devices against a broad spectrum of

security threats. This work not only contributes valuable insights into IoT security but

also provides practical solutions that can be implemented to ensure the secure operation of

IoT networks in various environments. The results underscore the importance of a multi-

faceted approach to IoT security, paving the way for future research and development in

this vital field.



Contents

Dedication i

Declaration iii

Acknowledgments v

Abstract vii

Contents ix

List of Publications xiii

List of Acronyms xv

List of Figures xvii

List of Tables xxi

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 IoT in Terrestrial Networks . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 IoT in Non-Terrestrial Networks . . . . . . . . . . . . . . . . . . . 2

1.2 Elements of IoT Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.3 Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 IoT Security Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Resource Constraints and Scalability Issues . . . . . . . . . . . . . 4

1.3.2 Diversity of Devices and Complexity of Networks . . . . . . . . . . 5

ix



x CONTENTS

1.3.3 Emergent Security Threats . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.1 Detection and Identification . . . . . . . . . . . . . . . . . . . . . . 7

1.4.1.1 CS-based Solutions . . . . . . . . . . . . . . . . . . . . . 8

1.4.1.2 ML-based Solutions . . . . . . . . . . . . . . . . . . . . . 9

1.4.2 Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4.3 Non-Terrestrial Networks . . . . . . . . . . . . . . . . . . . . . . . 12

1.5 Thesis Overview and Contributions . . . . . . . . . . . . . . . . . . . . . . 14

1.5.1 Chapter 2: IoT Device Detection and Identification . . . . . . . . . 14

1.5.2 Chapter 3: IoT Device Authentication in Terrestrial Networks . . 16

1.5.3 Chapter 4: IoT Device Authentication in Non-Terrestrial Networks 17

1.5.4 Chapter 5: Summary and Future Work . . . . . . . . . . . . . . . 18

2 IoT Device Detection and Identification 19

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Signal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.2 Consecutive-Time Slot Dynamic Model . . . . . . . . . . . . . . . 22

2.2.3 Multi-User Detection Problem . . . . . . . . . . . . . . . . . . . . 23

2.3 Deep Learning aided MUD . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.1 Learning Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.2 Attention Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4 Model Training, User Detection, and Complexity Analysis . . . . . . . . . 30

2.4.1 Model Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4.2 Blind Data Detection of Active Devices . . . . . . . . . . . . . . . 32

2.4.3 Computational Complexity . . . . . . . . . . . . . . . . . . . . . . 33

2.4.4 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4.5 Training Dataset Generation . . . . . . . . . . . . . . . . . . . . . 36

2.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5.1 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.5.2 Support Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.5.3 Device Identification . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.5.4 Multi-User Data Detection . . . . . . . . . . . . . . . . . . . . . . 42

2.5.5 Discussion on Robustness, Scalability and Generalisation . . . . . 44

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45



CONTENTS xi

3 IoT Device Authentication in Terrestrial Networks 47

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.1 Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.2 Signal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.3 Transmission Model . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.4 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3 Proposed Authentication Scheme . . . . . . . . . . . . . . . . . . . . . . . 53

3.3.1 Access Time Slots Generation . . . . . . . . . . . . . . . . . . . . . 54

3.3.2 Spreading Pool Construction . . . . . . . . . . . . . . . . . . . . . 56

3.3.3 Seed Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3.4 Authentication Decision . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4 Security Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4.1 Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4.2 Key Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4.3 Lightweight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.5.2 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.5.3 Authentication Performance . . . . . . . . . . . . . . . . . . . . . . 68

3.5.4 Robustness in Different Configurations . . . . . . . . . . . . . . . . 70

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4 IoT Device Authentication in Non-Terrestrial Networks 75

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2.1 Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2.2 Signal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2.3 Channel Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2.4 Medium Access Model . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2.5 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3 Proposed Modified AKMA Framework . . . . . . . . . . . . . . . . . . . . 82

4.3.1 Seed Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3.1.1 Initial Slot Selection . . . . . . . . . . . . . . . . . . . . . 82

4.3.1.2 Slot Update Mechanism . . . . . . . . . . . . . . . . . . . 84

4.3.1.3 AKMA Key Update Mechanism . . . . . . . . . . . . . . 84



xii CONTENTS

4.3.2 Transmission Pattern . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3.3 Authentication Decision . . . . . . . . . . . . . . . . . . . . . . . . 86

4.4 Security Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.4.1 Mitigation of MITM Attacks . . . . . . . . . . . . . . . . . . . . . 88

4.4.1.1 Initial Slot Selection: . . . . . . . . . . . . . . . . . . . . 89

4.4.1.2 Slot Update Mechanism: . . . . . . . . . . . . . . . . . . 89

4.4.1.3 AKMA Key Update Mechanism . . . . . . . . . . . . . . 89

4.4.1.4 Transmission Pattern Generation . . . . . . . . . . . . . . 90

4.4.2 Prevention of Unauthorized Access . . . . . . . . . . . . . . . . . . 91

4.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.5.2 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.5.3 Authentication Performance: . . . . . . . . . . . . . . . . . . . . . 93

4.5.4 Reduced Computational Overhead: . . . . . . . . . . . . . . . . . . 96

4.5.5 Emulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5 Conclusions and Future Research Directions 101

5.1 Summary of Key Findings of Thesis . . . . . . . . . . . . . . . . . . . . . 101

5.1.1 IoT Device Detection and Identification . . . . . . . . . . . . . . . 101

5.1.2 IoT Device Authentication in Terrestrial Network . . . . . . . . . . 102

5.1.3 IoT Device Authentication in Non-Terrestrial Network . . . . . . . 102

5.2 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.2.1 Research Work 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.2.2 Research Work 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2.3 Research Work 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Bibliography 105



List of Publications

The research work of my Ph.D. candidature has been published, accepted, or submitted

for publication as journal papers or conference proceedings in [1–9]. For ease of reference,

[1–9] are denoted by [J1-J6] and [C1-C3], respectively. Note that this thesis is based on

J1-J3 and C1. The other publications are not used in this thesis. They are listed as

follows:

Journal Papers

J1. S. Khan, S. Durrani, M. B. Shahab, S. J. Johnson, S. Camtepe, “Joint User and

Data Detection in Grant-Free NOMA With Attention-Based BiLSTM Network,”

IEEE Open J. Commun., vol. 4, pp. 1499 – 1515, Jul. 2023 (Chapter 1)

J2. S. Khan, C. Thapa, S. Durrani, S. Camtepe, “Access-Based Lightweight Physical-

Layer Authentication for the Internet of Things Devices,” IEEE Internet Things

J., vol. 11, no. 7, pp.11312 – 11326, Nov. 2023 (Chapter 2)

J3. S. Khan, S. Durrani, C. Thapa, S. Camtepe, “Modified AKMA for Decentralized

Authentication in LEO Satellite-Based IoT Networks,” accepted in IEEE Internet

Things J., Jan. 2025 (Chapter 3)

J4. S. Ahmad, S. Khan, K. S. Khan, F. Naeem, M. Tariq, “Resource Allocation for IRS-

Assisted Networks: A Deep Reinforcement Learning Approach,” IEEE Comms.

Stand. Mag., vol. 7, no. 3, pp. 48 – 55, Sep. 2023

J5. F. Naeem, G. Kaddoum, S. Khan, K. S. Khan, N. Adam, “IRS-Empowered 6G

Networks: Deployment Strategies, Performance Optimization, and Future Research

Directions,” IEEE Access, vol. 10, pp. 118676 – 118696, Nov. 2022

J6. S. J. Siddiqi, F. Naeem, S. Khan, K. S. Khan, M. Tariq, “Towards AI-enabled traffic

management in multipath TCP: A survey,” Comput. Commun., vol. 181, no. 1,

pp. 412-427, Nov. 2021

xiii



xiv CONTENTS

Conference Proceedings

C1. S. Khan, C. Thapa, S. Durrani, S. Camtepe, “Beyond Key-Based Authentication: A

Novel Continuous Authentication Paradigm for IoTs,” in Proc. IEEE GLOBECOM

Wkshps, Kuala Lumpur, Malaysia, Dec. 2023 (Chapter 2)

C2. S. Idrees, X. Jia, S. Khan, S. Durrani, X. Zhou, “Deep Learning Based Passive

Beamforming for IRS-Assisted Monostatic Backscatter Systems,” in Proc. IEEE

ICASSP, Singapore, Singapore, May 2022

C3. S. Khan, S. Durrani, X. Zhou, “Transfer Learning Based Detection for Intelligent

Reflecting Surface Aided Communications,” in Proc. IEEE PIMRC, Helsinki, Fin-

land, Sep. 2021



List of Acronyms

3GPP 3rd Generation Partnership Project

ADMM Alternative-Direction-Method-of-Multipliers

AI Artificial Intelligence

AKMA Authentication and Key Management for Applications

AP Access Point

AUD Active User Detection

BER Bit Error Rate

BHT Binary Hypothesis Testing

BiLSTM Bidirectional Long Short-Term Memory

BSASP Block Sparsity Adaptive Subspace Pursuit

CFR Channel Frequency Response

CIR Channel Impulse Response

CS Compressed Sensing

CSI Channel State Information

D-AUD Deep Active User Detection

DFS Doppler Frequency Shift

DH Diffie-Hellman

DNN Deep Neural Network

IORLS Iterative Order Recursive Least Square

IoT Internet of Things

IRSA Irregular Repetition Slotted ALOHA

LEO Low Earth Orbit

xv



xvi CONTENTS

LS-OMP Least Squares Orthogonal Matching Pursuit

LSTM Long Short-Term Memory

LTE Long-Term Evolution

ML Machine Learning

MMSE Minimum Mean Square Error

MMV Multiple Measurement Vector

MUD Multi-User Detection

MUSA Multi-User Shared Access

NFSR Non-Linear Feedback Shift Register

NOMA Non-Orthogonal Multiple Access

NN Neural Network

OF Overloading Factor

PIAASP Prior-Information Aided Adaptive Subspace Pursuit

QPSK Quadrature Phase Shift Keying

RSSI Received Signal Strength Indicator

SNR Signal-to-Noise Ratio

SVM Support Vector Machine

UAV Unmanned Aerial Vehicle



List of Figures

1.1 The overview of the three technical chapters of the thesis. . . . . . . . . . 15

2.1 Illustration of a typical uplink grant-free NOMA system. . . . . . . . . . . 21

2.2 Detailed architecture and working of the proposed attention-based BiL-

STM network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 The proposed BiLSTM module with an attention mechanism. . . . . . . . 29

2.4 Validation loss Jv(Θ) for different number of hidden layers L, with total

number of devices K = 200, number of subcarriers N = 100, and number

of active devices S = 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.5 Probability of detection, ρd, versus SNR (dB) for the number of active

devices S, with the total number of potential devices K = 200, and the

number of subcarriers N = 100. . . . . . . . . . . . . . . . . . . . . . . . . 40

2.6 Average BER versus the SNR (dB), with the total number of potential

devices K = 200, the number of subcarriers N = 100, and the number of

active devices S = 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.7 Average BER versus the number of active devices S, with total number of

potential devices K = 200, the number of subcarriers N = 100, and SNR

= 6 dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.8 Average BER versus SNR (dB) for varying OF, with number of subcarriers

N = 100, and number of active devices S = 20. . . . . . . . . . . . . . . . 44

2.9 Average BER versus the temporal correlation parameter η, with total

number of devices K = 200, number of subcarriers N = 100, number of

active devices S = 20, and SNR = 6 dB. . . . . . . . . . . . . . . . . . . . 45

3.1 Illustration of our system model. The transmission between the IoT de-

vices and the AP is carried out by following the pre-agreed access time

slots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

xvii



xviii LIST OF FIGURES

3.2 Proposed authentication scheme comprises four processes: access time

slots generation, spreading pool construction, seed generation, and au-

thentication decision. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3 Flowchart of proposed authentication scheme and its interaction with

grant-free NOMA system model considered in this work. . . . . . . . . . . 55

3.4 False alarm rate, ρfa, versus the time between updates (sec), with the total

number of potential devices K = 200, the number of resources N = 100,

and the number of active devices S = 20. . . . . . . . . . . . . . . . . . . 68

3.5 Misdetection rate, ρmd, versus SNR (dB), with the total number of poten-

tial devices K = 200, the number of resources N = 100, and the number

of active devices S = 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.6 Misdetection rate, ρmd, versus SNR (dB) for the varying number of active

devices S, with the total number of potential devices K = 200, and the

number of resources N = 100. . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.7 Spreading sequence collision rate, ρsc, versus the varying number of active

devices S, with the total number of potential devices K = 200. . . . . . . 71

3.8 Misdetection rate, ρmd, versus the time between updates (sec) for the

varying length of authentication sequence L, with the total number of

potential devices K = 200, the number of resources N = 100, and the

number of active devices S = 20. . . . . . . . . . . . . . . . . . . . . . . . 72

3.9 Computational cost versus the time between updates (sec), with the total

number of potential devices K = 200, the number of resources N = 100,

and the number of active devices S = 20. . . . . . . . . . . . . . . . . . . 73

4.1 Illustration of the system model for LEO satellite-based IoT network. The

transmission from the IoT devices to the serving satellite includes a line-

of-sight and a scattering component. The transmission from the UAV to

the serving satellite is line-of-sight. . . . . . . . . . . . . . . . . . . . . . . 77

4.2 Flowchart of proposed authentication framework and its interaction with

IRSA-based transmission model considered in this work. . . . . . . . . . . 83

4.3 Authentication rate versus SNR (dB), with the total number of potential

devices K = 1000, the number of resources N = 400, and the number of

active devices M = 200. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.4 Misdetection rate versus SNR (dB) for the varying number of active devices

M , with the total number of potential devices K = 1000, and the number

of resources N = 400. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94



LIST OF FIGURES xix

4.5 Bandwidth cost versus the increasing number of active devicesM , with the

total number of potential devices K = 1000, and the number of resources

N = 400. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.6 Computational cost versus the time between updates (sec), with the total

number of potential devices K = 1000, the number of resources N = 400,

and the number of active devices M = 200. . . . . . . . . . . . . . . . . . 96

4.7 Average authentication latency versus the time between updates (sec),

with the total number of potential devices K = 1000, the number of

resources N = 400, and the number of active devices M = 200. . . . . . . 98





List of Tables

2.1 Important symbols used in this work. . . . . . . . . . . . . . . . . . . . . . 20

2.2 Computational complexity comparison for different sparsity levels (the

total number of potential devices K = 200, the number of subcarriers

N = 100, the number of hidden layers L = 3, width of hidden layer

α = 1000). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3 Parameter values used in generating the training dataset. . . . . . . . . . 37

2.4 Device identification accuracy versus the number of active devices S, with

the total number of potential devices K = 200, the number of subcarriers

N = 100, and SNR = 6 dB. . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1 Important symbols used in this work. . . . . . . . . . . . . . . . . . . . . . 49

3.2 Key length versus search space complexity of physical-channel-based and

proposed techniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.3 Access time slots generation using seed. . . . . . . . . . . . . . . . . . . . 66

4.1 Important symbols used in this paper. . . . . . . . . . . . . . . . . . . . . 78

4.2 Access time slots generation using seed. . . . . . . . . . . . . . . . . . . . 92

xxi





Chapter 1

Introduction

1.1 Background

The rapid advancement and integration of the Internet of Things (IoT) into modern soci-

ety are transforming countless sectors, including healthcare, agriculture, manufacturing,

and urban development [10,11]. The seamless connectivity and intelligent data exchange

between devices that IoT enables are not just conveniences but are becoming essential

components of digital infrastructure [12]. This infrastructure is foundational to develop-

ing smart cities, autonomous vehicles, and advanced manufacturing systems [13,14], and

it is contributing to the IoT market’s unprecedented growth rate globally. As of 2024,

there are an estimated 18 billion IoT devices worldwide, and this number is expected to

reach 22 billion by 2026 [15]. The IoT sector’s market value is projected to exceed $1
trillion globally by 2026, reflecting its expanding role in various industries [16]. In Aus-

tralia, the IoT market is also experiencing significant growth, with an estimated value of

$9 billion by 2025 [17].

IoT is fundamentally reshaping the landscape of digital communication by embedding

sensors, software, and other technologies into everyday objects, enabling them to collect

and exchange data. However, while beneficial, this proliferation of interconnected devices

introduces significant security challenges that must be addressed to safeguard sensitive

information and maintain the integrity of these systems [18]. The unique characteristics

of IoT devices, such as their resource constraints, diverse operational environments, and

massive scale of deployments, complicate traditional security measures. Unlike conven-

tional computing devices, many IoT devices are designed to be small, inexpensive, and

energy-efficient, often lacking the computational power and memory required to support

robust security protocols [19]. This makes them more vulnerable to attacks and harder

1
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to secure using traditional methods.

Additionally, the diverse range of IoT applications means that these devices are de-

ployed in various environments, each with its own specific security requirements and

challenges. For example, an IoT device used in a smart home environment may face

different threats compared to one used in a remote sensing setting. This diversity neces-

sitates a flexible and adaptable approach to IoT security that can address the specific

needs of different applications and deployment scenarios. Accordingly, the concept of IoT

in terms of deployment extends to two primary domains: cellular networks and satellite

networks.

1.1.1 IoT in Terrestrial Networks

Cellular IoT refers to connecting IoT devices using cellular networks such as 5G and the

emerging 6G technology. This integration provides wide coverage, mobility, and support

for a large number of devices, making it ideal for applications like smart cities, fleet

management, and remote monitoring [20, 21]. Cellular networks offer robust infrastruc-

ture but also face unique security challenges, including ensuring the confidentiality and

integrity of the data transmitted over these widely accessible networks.

The advent of 6G technology is particularly significant for IoT as it promises to

deliver higher data speeds, reduced latency, and the ability to connect a vast number of

devices simultaneously [22]. These enhancements are crucial for real-time applications

such as autonomous driving and smart grid management, where timely data processing

and response are critical. However, the widespread deployment of 6G also introduces

new vulnerabilities and potential attack vectors that must be addressed to protect IoT

ecosystems.

1.1.2 IoT in Non-Terrestrial Networks

In contrast, IoT in non-terrestrial networks utilise satellites to extend IoT connectivity to

remote and hard-to-reach areas where terrestrial networks are unavailable. Satellites can

provide global coverage, making them crucial for applications like environmental monitor-

ing, disaster management, and global asset tracking [23,24]. However, the use of satellite

networks for IoT also introduces distinct security concerns, such as the vulnerability of

satellite communications to interception and jamming.

Satellites are essential for ensuring connectivity in remote regions, including oceans,

deserts, and polar areas, where terrestrial infrastructure is impractical or impossible to

deploy. This capability is vital for applications like tracking wildlife, monitoring climate
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change, and managing natural resources. Nevertheless, the reliance on satellites also

necessitates robust encryption and authentication mechanisms to prevent unauthorised

access and ensure the integrity of the data transmitted [25,26].

1.2 Elements of IoT Security

This section explores the IoT security framework that systematically addresses the critical

aspects of IoT security. Addressing these elements is crucial for developing robust security

mechanisms that can effectively mitigate the unique challenges posed by the diverse and

resource-constrained nature of IoT deployments [19].

1.2.1 Detection

The first element of an end-to-end IoT security framework is the detection of devices at

the access point (AP). This step is crucial for ensuring that all IoT devices can be iden-

tified without bias. Given the resource-constrained nature of IoT devices, they typically

remain in a low-power state to conserve energy, waking only to transmit data before

returning to sleep. This sporadic activity requires the AP to efficiently detect which IoT

devices are active and transmitting data.

Detection must be impartial, not relying on specific device types, and resource-

efficient to accommodate the limited capabilities of IoT devices. The burden of detection

lies primarily with the AP, which must perform the heavy lifting in detecting active

devices without exhausting the devices’ resources. An impartial and efficient detection

process is the foundational step in securing IoT networks, ensuring that all devices are

accurately detected, regardless of their heterogeneity or resource limitations.

1.2.2 Identification

Following detection, the next critical element is the identification of the detected IoT

devices. Identification involves recognising the specific devices that have been detected

by the AP, even when no prior information about these devices is available. This step

is essential because it bridges the gap between merely detecting data transmissions and

knowing the origin of these transmissions.

Identification must be performed without prejudice and should not impose significant

resource demands on the IoT devices. The AP must be capable of accurately determining

which device each data transmission belongs to, ensuring that the network can appropri-

ately address and manage each device. This capability is vital for maintaining a secure



4 Introduction

and organised IoT environment, as it allows for the proper allocation of resources and

the implementation of targeted security measures.

1.2.3 Authentication

The final element in the IoT security framework is the authentication of the detected

and identified devices. Authentication verifies the identity of each IoT device, ensuring

that it is authorised to access network resources and transmit data securely. This step

is crucial for preventing unauthorised access and protecting sensitive information within

the IoT network.

Authentication processes must be lightweight and continuous, similar to detection

and identification, to accommodate the diverse and resource-constrained nature of IoT

devices. The AP must handle the bulk of the authentication process, minimising the

resource usage on the IoT devices. Robust and efficient authentication mechanisms are

essential for maintaining the integrity and security of the IoT network, ensuring that all

devices are legitimate and can be trusted to operate within the network.

1.3 IoT Security Challenges

This section explores the primary security challenges associated with IoT devices, focus-

ing on their resource constraints, scalability issues, the diversity and complexity of the

devices and networks, and the emergent security threats they face. Addressing these

challenges is crucial to developing robust security frameworks for IoT ecosystems.

1.3.1 Resource Constraints and Scalability Issues

IoT devices are typically designed to be low-cost and energy-efficient, often resulting

in limited computational power and minimal storage capacity. These constraints pose

significant challenges in implementing robust security protocols. Traditional security

mechanisms, such as encryption and multi-factor authentication, require substantial com-

putational resources and memory, making them impractical for resource-constrained IoT

devices [19]. The limitations of IoT devices necessitate the development of lightweight

security solutions that can operate within their constraints. For example, physical layer

authentication, a lightweight alternative to conventional key-based methods, can be more

suitable for IoT devices due to their limited capabilities. This approach leverages the

unique properties of the IoT devices’ transmission model for authentication, reducing the

need for computationally intensive key generation and management processes. However,
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even this approach faces limitations such as poor robustness under channel fluctuations

and reconciliation overhead, necessitating further research into more efficient and scalable

solutions [27,28].

Scalability is another critical issue in IoT security. The sheer number of devices in an

IoT system can be overwhelming, making deploying and maintaining security solutions

challenging. The dynamic nature of IoT environments, with devices constantly joining

and leaving the network, further complicates scalability. Solutions must be designed to

handle this dynamic and vast scale efficiently [29]. For instance, connected devices, such

as traffic sensors, streetlights, surveillance cameras, and public transportation systems,

can reach millions in a smart city deployment. Ensuring that each device is securely

connected and communicating with the central network without introducing significant

latency or vulnerability is a monumental task. Traditional security solutions that work

well for smaller, static networks may not scale effectively to such a large and dynamic

environment [30,31].

Moreover, the resource constraints of IoT devices mean that any security solution

must be lightweight and efficient, both in terms of computational overhead and energy

consumption. This requires innovative approaches that can provide robust security with-

out overburdening the devices. Techniques such as lightweight cryptography, secure

bootstrapping, and decentralised security protocols are all areas of active research to

address these challenges [32,33].

1.3.2 Diversity of Devices and Complexity of Networks

The diversity of IoT devices adds another layer of complexity to securing IoT ecosys-

tems. These devices range from simple sensors and actuators to more complex entities

like smart meters and industrial control systems. Each type of device has different ca-

pabilities and security needs, requiring flexible security frameworks that can adapt to

these varying requirements [34]. For instance, a simple temperature sensor in a smart

home may only need basic authentication and data encryption to ensure that the data

it transmits is secure and that the device cannot be easily hijacked. In contrast, a smart

meter in an industrial setting may require more sophisticated security measures, such as

tamper detection, secure firmware updates, and advanced anomaly detection to prevent

unauthorised access and ensure the data’s integrity [35].

Lightweight authentication schemes that leverage device-specific attributes, such as

access time slots and spreading sequences, can provide continuous and robust authentica-

tion for a wide range of IoT devices without imposing significant computational overhead.



6 Introduction

These schemes are particularly useful in environments with high device heterogeneity,

such as smart cities or industrial IoT, where devices must operate under different con-

ditions and threat models [36]. Network complexity further exacerbates these security

challenges. IoT networks often involving multiple interconnected devices form complex

topologies. Each connection point can introduce new vulnerabilities, making it crucial to

effectively design security protocols to manage and protect these intricate networks. For

example, in Low Earth Orbit (LEO) satellite-based IoT networks, the dynamic nature of

satellite communication, with frequent handovers and variable latency, necessitates de-

centralised and continuous authentication frameworks that can operate efficiently under

such conditions [37].

1.3.3 Emergent Security Threats

As IoT systems become more prevalent, they attract increasingly sophisticated cyber-

attacks. These threats exploit the unique vulnerabilities of IoT networks, such as stan-

dard communication protocols and widespread device distribution, making security a

moving target [38, 39]. Emergent threats include man-in-the-middle attacks, spoofing,

and eavesdropping. In LEO satellite-based IoT networks, for instance, adversaries can

exploit the high mobility and frequent handoffs to launch attacks that traditional terres-

trial network security protocols cannot counter effectively. This highlights the need for

innovative security solutions tailored to the specific characteristics of IoT networks [40].

Similarly, man-in-the-middle attacks involve an attacker intercepting and potentially al-

tering the communication between two devices. In an IoT context, this could mean

intercepting the data from a sensor (such as a UAV) and injecting false information,

leading to potentially dangerous consequences [41].

Spoofing attacks involve an attacker pretending to be a legitimate device or user to

gain unauthorised access to a network or system. In IoT networks, this could involve an

attacker masquerading as a legitimate device to gain access to sensitive data or control

other devices. This is particularly concerning in scenarios where IoT devices control

physical systems, such as in smart homes or industrial automation [42]. Similarly, eaves-

dropping attacks involve an attacker passively monitoring the communication between

devices to gain access to sensitive information. In IoT networks, this could involve inter-

cepting data from sensors or control systems to gather information about the environment

or the state of the system. This information could then be used for further attacks or to

gain unauthorised access to the network [43].

Moreover, the use of machine learning (ML) and artificial intelligence (AI) in IoT se-
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curity presents both opportunities and challenges. While these technologies can enhance

threat detection and response by analysing patterns and anomalies in IoT traffic, they also

introduce new attack vectors. For example, adversaries could manipulate training data or

exploit vulnerabilities in ML algorithms to bypass security mechanisms [44]. Adversaries

can also employ techniques such as data poisoning, where they introduce malicious data

into the training set, leading to compromised models that fail to detect certain types

of attacks or even falsely classify malicious activities as benign. Another sophisticated

attack method is adversarial ML, where attackers can force the network to lead to the

misclassification of network traffic, allowing malicious activities to go undetected. This

is particularly concerning for networks relying on AI for real-time threat detection and

response, as it undermines the reliability and effectiveness of these networks.

1.4 Related Works

In the following subsections, we discuss the prior works related to the identified IoT

security challenges in the context of the comprehensive security framework of IoT device

detection, identification, and authentication in terrestrial and non-terrestrial networks.

1.4.1 Detection and Identification

In wireless communications, orthogonal multiple access (OMA) and NOMA are key re-

source allocation strategies. OMA assigns distinct resources to devices, whereas NOMA

enables multiple users to share resources by leveraging power or code-domain multiplex-

ing. In traditional grant-based OMA schemes, the maximum number of IoT devices

being serviced is limited by the number of available orthogonal resources. Therefore,

scheduling is required to allow the IoT devices to share the orthogonal resources. In

contrast, grant-free NOMA allows IoT devices to transmit their data in an arrive-and-go

manner by randomly choosing a resource block without going through the grant-access

process [45, 46]. When multiple IoT devices choose the same resource block, a collision

occurs, which requires retransmission. These collisions are significantly reduced due to

the different multiple access signatures in NOMA [47]. Therefore, from a practical per-

spective, grant-free NOMA is considered an attractive solution for sporadic IoT traffic

use cases.

The basic principle of grant-free NOMA is to allow the IoT devices to randomly access

the resource blocks through multiple access signatures, such as power levels, spreading se-

quences, scrambling, and interleaving [45, Table. III]. Among these signatures, spreading
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sequences are considered superior because they can efficiently mitigate multi-user inter-

ference [48]. The spreading sequences allow device-specific, low cross-correlation codes to

enable grant-free communication. However, in spreading-based signatures, longer-length

sequences are needed as the number of IoT devices increases. In this regard, complex

spreading sequences, as proposed in multi-user shared access (MUSA) [49], enable sup-

port for a significantly larger number of IoT devices than pseudo-random sequences, i.e.,

a higher overloading factor (OF) without increasing the sequence length.

In spreading-based grant-free NOMA, each active device randomly and independently

selects a spreading sequence from a predefined set [50]. Therefore, the key research

challenge is to correctly detect the spreading sequences of the active IoT devices, also

known as a multi-user detection (MUD) problem [51]. In this regard, identifying the

total number of active IoT devices, also known as the active user detection (AUD) sub-

problem, and the accuracy of correctly identified active IoT devices, which is the active

user support set sub-problem, play a key role.

Identifying an IoT device depends on the quality of the active user support set.

This can be derived from Active User Detection (AUD), which directly impacts the

performance of IoT device detection and can be classified as a MUD problem. In many

practical IoT use cases, while the total number of IoT devices is large, only a small

percentage of the total IoT devices may be active in a given time frame [52–54]. Using

this inherent sparsity of IoT devices, the AUD problem can be readily formulated as a

sparse recovery problem, which can be solved using compressed sensing (CS) [55, 56] or

ML [45]. Considering the inherent sparsity and the sporadic device activity, it is crucial

to correctly model the activity pattern of IoT devices over a time frame. The activity

pattern of IoT devices over a given time frame, whether independent or temporally

correlated, greatly impacts the performance of MUD.

1.4.1.1 CS-based Solutions

CS-based solutions with frame-wise sparsity model: Many works have considered CS-

based solutions for the MUD problem in spreading based grant-free NOMA with frame-

wise sparsity [57–61]. In [57], the frame-wise joint sparsity model is exploited to achieve

better performance of device detection using an iterative order recursive least square

(IORLS) algorithm based on the orthogonal matching pursuit (OMP) algorithm. How-

ever, the authors considered prior knowledge of device sparsity level at the AP, which is

typically unknown in practical scenarios. In [58], the authors proposed the alternative-

direction-method-of-multipliers-(ADMM)-based CS to show improvement in the device
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detection performance using a partial active device set as prior knowledge. However,

obtaining the prior information on either the sparsity level, equivalent channel matrices,

or both in practical systems is difficult. In [59], the device detection problem was mod-

elled as a multiple measurement vector (MMV) problem, and a block sparsity adaptive

subspace pursuit (BSASP) algorithm was used to solve it. However, pilot symbols are

transmitted before every data packet, which leads to a significant system overhead. Sim-

ilarly, the authors in [60, 61] developed greedy algorithms for joint device activity and

data detection. However, these algorithms assume complete channel gain knowledge at

the AP or pilot symbols for channel estimation.

CS-based solutions with burst sparsity model: Some recent works have considered

CS-based solutions for the MUD problem in spreading-based grant-free NOMA with

burst sparsity [62–64]. In [62], a dynamic CS-based multi-device detection was proposed,

which utilised the temporal correlation between device transmissions in the previous

frame to achieve the performance gain. This algorithm was developed based on the

assumption that the device sparsity level is known, which requires a training stage to

learn such information accurately. Alternatively, the prior-information aided adaptive

subspace pursuit (PIAASP) algorithm was proposed in [63], which utilised the prior

support according to the additional quality information (the number of common support

sets shared in time slots). However, the preceding work is heavily dependent on the inertia

of device support; thus, it is unsuitable when the active device support varies rapidly

in adjacent time slots, as is often the case in practice. Similarly, the authors in [64]

proposed an algorithm to take advantage of the temporal correlation, where the frame

is divided into subframes. Each subframe contains adjacent time slots and considers the

active and inactive devices sharing common support in all the time slots. Also exploiting

the temporal correlation, the authors in [65] used ℓ2,1 minimisation to jointly detect the

user activity and data.

1.4.1.2 ML-based Solutions

Recent works have adopted ML and demonstrated higher detection accuracy than con-

ventional iterative algorithms [66–71]. The authors in [66] and [67] considered pseudo-

random noise-based and complex spreading sequences, respectively, and proposed deep

neural networks (DNN) for active user detection (D-AUD) in a grant-free NOMA system

by using the received signal as the input to the DNN. However, since the preceding works

utilised a vanilla DNN for this purpose, the temporal activity of the devices cannot be

taken advantage of, leaving room for improvement. To tackle this, the authors in [68]
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utilised a long short-term memory (LSTM) network to predict the activity of the devices

based on their activation history. However, the dependence of LSTM on the previous

activation history of devices makes the overall system prone to misclassification since

the activation history is vaguely modelled. Adopting a different approach, the authors

in [69] considered the use-case of generative networks to tackle the issue of detecting

devices in different OFs with a single trained model. However, this work did not take

the temporal correlation of device activity patterns into account. The authors in [71]

provided a somewhat different approach by utilising power-domain NOMA instead of

code-domain NOMA as the multiple access signature. However, the system faces ex-

treme degradation due to this choice as the number of active devices in the cell increases.

Furthermore, pilot symbols are included after every data symbol, drastically increasing

the system’s overhead. In a similar fashion, the authors in [70] utilised a bi-directional

deep neural network for detection in a two-user power domain NOMA scenario. However,

this differs from the grant-free NOMA scenario considered in this work since it does not

use spreading-based signatures and assumes the connection of devices using prior access

procedures. Similarly, the authors in [72] assigned nonorthogonal pilots to devices for

transmission, leading to a larger system overhead as the number of devices increases.

Thus, a more resilient approach is required in the context of deep learning, which can ex-

ploit the temporal correlation of active devices in the adjacent time slots whilst providing

accurate detection of devices.

1.4.2 Authentication

IoT devices usually connect to a network through an AP. The conventional approach to

establish secure communications between IoT devices and AP is to generate a shared

secret key by exploiting the reciprocity of the random fading channel [73, 74]. Herein,

the IoT devices measure highly correlated wireless channel characteristics (e.g., channel

impulse responses, or received signal strengths) and use them as shared random sources to

generate a shared key. However, the low-cost and often resource-constrained IoT devices

cannot facilitate physical-channel probing for a shared key generation due to the limited

resources. Instead, these IoT devices rely on intermittent transmissions, which makes

them highly susceptible to adversarial attacks [75].

Existing methods, such as upper-layer security protocols, suffer from high computa-

tional overhead [76]. Conversely, lightweight options are available, but these often rely

on physical channel attributes [77, 78] and are unreliable in the presence of variations

and noise. Furthermore, channel probing is challenging given the resource limitation of
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the IoT devices. This underscores the need for fast (enabled by continuous authentica-

tion mechanism), reliable (no reliance on physical channel attributes), and lightweight

authentication mechanisms for IoT devices.

Considering the adversaries, upper-layer security protocols have been increasingly

studied in the literature [76,79]. However, they are not well suited for resource-constrained

IoT devices due to their massive computational overhead and excessive latency. In this

regard, low-complexity authentication schemes are desirable for resource-constrained IoT

devices, complementing the overall network entropy by introducing additional measures

for IoT device authentication in the lower layers [80,81].

Physical layer security schemes based on keyless authentication [82–84] can provide

lightweight security to the resource-constrained IoT devices by exploiting the inherent

physical-channel attributes and/or device-specific features of IoT devices. By doing so,

the overall network entropy can be improved while reducing IoT devices’ computational

cost and energy consumption. The authors in [82] introduced scheduling policies to

utilise the physical channel characteristics for device authentication. The authors in [83]

utilised the channel and phase noise of the physical channel between a transceiver pair

utilising multiple antennas for hypothesis testing and device authentication. Similarly,

the authors in [84] utilised the correlation of multiple channel impulse responses (CIR)

from the physical channel for authentication. Recently, ML has also been applied to

combine with physical layer authentication schemes to improve the robustness under

channel fluctuations [77,78,85]. However, the reliance of these techniques on the physical

channel for feature extraction results in unreliable authentication performance due to

variations and noise present in complex dynamic environments.

In a different approach, to achieve continuous authentication, the authors in [86]

used an authentication mechanism to create a learning-based kernel model that utilises

multi-attributes from the physical channel for device authentication. Then, the authors

in [87] utilised the multi-attribute design of the physical channel and support vector ma-

chine (SVM) to utilise pseudo-random binary access time slots for device authentication.

However, due to the time-varying nature of the physical channel, especially in complex

dynamic environments, and the low-cost components utilised by the IoT devices, the

variations and noise cause unreliable seed acquisition. Additionally, since these works

are based on the assumption of physical channel reciprocity, they will incur a high seed

mismatch rate due to the half-duplex nature of the resource-constrained IoT devices;

this results in multi-staged parity bits for seed reconciliation, which is against the de-

ployment spirit of resource-constrained IoT devices. Moreover, since the IoT devices are

resource-constrained, the physical channel probing process cannot be carried out due to
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the inherent sporadic communication nature of the IoT devices.

1.4.3 Non-Terrestrial Networks

The assurance of security through robust authentication in LEO satellite-based IoT net-

works is indispensable for maintaining the integrity of these networks [88]. The growing

dependence on LEO satellites for various applications, ranging from global internet cov-

erage to critical communication infrastructure, underscores the importance of securing

these networks against cyber threats. Currently, operational LEO satellite systems such

as Starlink and OneWeb function within the 400-2000 km altitude range, with rapid

orbital velocities, which necessitates frequent handoffs. This unique operational envi-

ronment, characterised by high speeds and low earth orbit, introduces significant chal-

lenges in ensuring seamless and secure communication. The dynamic nature of these

networks renders them vulnerable to adversarial attacks, such as man-in-the-middle and

spoofing, potentially instigated by rogue Unmanned Aerial Vehicles (UAVs) [89]. These

vulnerabilities highlight the need for innovative security solutions tailored to the unique

characteristics of LEO satellite-based IoT networks.

In light of the 3rd Generation Partnership Project (3GPP) Release 17 guidelines,

device authentication in 5G networks is secured via the Authentication and Key Man-

agement for Applications (AKMA) framework [90]. While this centralised approach is

proficient within terrestrial 5G infrastructures, its direct application to LEO satellite-

based IoT networks presents significant challenges, emphasising the necessity for a decen-

tralised authentication strategy. Firstly, the inherent latency and connectivity variability

characteristic of LEO satellite environments undermines AKMA’s efficacy, introducing

substantial delays in the authentication process that are unsuitable for latency-sensitive

applications. Additionally, the scalability of AKMA is questionable in the face of ex-

ponentially growing IoT devices, as its centralised nature might not efficiently support

the burgeoning network demand [91]. Further, the continuous authentication method

employed by the AKMA framework conflicts with the energy-saving strategies of IoT

devices, which are built to transmit data sporadically to save power. This mismatch

unintentionally leads to higher energy usage and shorter device lifespans. Furthermore,

AKMA’s centralised scheme heightens security and privacy vulnerabilities due to the

increased risk of man-in-the-middle attacks during prolonged key exchanges [92]. The

infrastructure required to implement AKMA across LEO satellite networks significantly

elevates operational costs and complexity, a limitation that decentralised methods could

mitigate by leveraging existing network metrics for authentication, thus reducing infras-
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tructure demands. Lastly, AKMA’s rigidity complicates its adaptability to the dynamic

nature of LEO satellite network topology, potentially causing authentication delays and

service disruptions. Hence, pursuing innovative, decentralised authentication methods

becomes imperative, designed to address LEO satellite-based IoT networks’ unique op-

erational demands and environmental challenges, ensuring scalable, energy-efficient, and

secure communication.

Centralised authentication schemes typically rely on a single entity to manage authen-

tication credentials and processes. A prominent example is 3GPP’s Release 17, which

highlights AKMA’s framework for providing centralised security within the terrestrial 5G

infrastructure [90, 92]. However, the AKMA authentication framework in LEO satellite-

based IoT networks faces significant challenges. First, AKMA’s centralised structure

struggles with scalability amidst rapidly growing IoT device numbers, leading to ineffi-

cient network support. Its continuous authentication approach contradicts IoT devices’

energy-saving strategies by causing increased energy consumption and reducing device

lifespan due to the continuous shared key exchange requirement for every session [93].

Moreover, the centralised nature heightens security risks, notably from man-in-the-middle

attacks during key exchanges, and escalates operational costs and complexity due to the

extensive infrastructure required [94]. Thus, exploring decentralised authentication meth-

ods that address LEO satellite-based IoT networks’ unique requirements and challenges

is critical for ensuring scalable, energy-efficient, and secure communications.

In contrast, decentralised authentication schemes distribute the authentication pro-

cess across multiple entities, reducing the dependency on a single point of failure and

enhancing scalability. These schemes are particularly beneficial in environments with

high mobility and dynamic topologies, such as LEO satellite networks. Blockchain tech-

nology offers a decentralised and immutable ledger for authentication, ensuring high

security and trust [95]. The authors in [96] integrate blockchain with certificateless en-

cryption to provide a secure and scalable authentication framework for LEO satellite

networks. This approach mitigates the risks of man-in-the-middle attacks and ensures

data integrity by leveraging the distributed nature of blockchain. Moreover, AI-oriented

multifactor authentication schemes enhance security by using multiple authentication

factors and AI for anomaly detection and response. For instance, the AI-oriented two-

phase multifactor authentication in space-air-ground integrated networks employs AI to

analyse communication patterns and authenticate devices based on dynamic and static

factors [97].

Lightweight authentication is an important feature for centralised and decentralised

schemes, mainly when dealing with IoT devices with limited computational and power ca-
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pabilities. These schemes often combine cryptographic techniques with efficient key man-

agement to ensure security without imposing significant overhead. The authors in [87]

utilised a multi-attribute design to utilise pseudo-random binary access time slots for

device authentication. Then, the authors in [2, 7] extended this to a two-stage authen-

tication strategy in a terrestrial environment. However, these works are prone to delays

or failures in synchronisation, which can lead to discrepancies in user data, potentially

allowing unauthorised access or denying access to legitimate devices [98]. Further, the

scalability of these works to non-terrestrial networks is unclear due to their strict reliance

on physical channels in the terrestrial networks.

1.5 Thesis Overview and Contributions

This thesis presents a comprehensive examination of security measures for IoT devices,

highlighting novel strategies to enhance their detection, identification, and authentication

across terrestrial and non-terrestrial networks. Figure 1.2 shows an overview of the

thesis. The research encompasses cutting-edge machine-learning techniques and advanced

cryptographic methods to address the unique challenges posed by IoT environments.

The following sections detail the individual contributions of this work, starting with the

sophisticated detection and identification processes and culminating in a future-oriented

approach to IoT device security. The chapter-wise summary of the contributions of this

thesis is given as follows:

1.5.1 Chapter 2: IoT Device Detection and Identification

The initial step in securing IoT devices involves their accurate detection and identifica-

tion within a network. The first part of my research focuses on enhancing the capability

of IoT systems to detect and identify connected IoT devices accurately using grant-

free non-orthogonal multiple access (NOMA). This technology is particularly suited for

environments with a high density of IoT devices, enabling efficient and scalable commu-

nications without the need for scheduled access. Employing advanced ML techniques,

such as attention-based bidirectional long short-term memory (BiLSTM) networks, this

work aims to improve the detection accuracy and reduce the collision rate among IoT

devices, thus facilitating reliable device management and security enforcement. In this

context, our main contributions are as follows.

• We design a BiLSTM network with an attention mechanism to carry out AUD. The

BiLSTM network utilises two LSTM networks conjunctionally in opposite tempo-
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Figure 1.1: The overview of the three technical chapters of the thesis.

ral directions. The attention mechanism exploits the temporal correlation in the

active user set and facilitates the BiLSTM network by providing context to the

important activation history of the active IoT devices. By training the network in

the offline stage, the proposed network maps the superimposed received signal and

the active user support set, detecting a larger number of active IoT devices with

higher accuracy.

• By detecting the active user support set using our proposed BiLSTM network, we

then provide a framework to carry out blind data detection at the AP [99] without

the need for explicit channel training. Using the estimated active user support set

and complex spreading sequences, a blind minimum mean square error (MMSE)

weight is obtained, from which the received signal is reconstructed without the

explicit need for statistical channel information.

• Compared to the benchmark OMP scheme, our results show an improvement of

around 30% when detecting the number of active IoT devices and an improve-

ment of around 29% when identifying the active device support set. Additionally,
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the proposed network achieves a gain of around 2.3 dB in bit-error-rate (BER)

compared to the OMP scheme.

• Compared to the ML-aided LSTM-based CS scheme, our results show an improve-

ment of around 10% when detecting the number of active IoT devices and an

improvement of around 6% when identifying the active device support set. Addi-

tionally, the proposed network achieves a gain of around 0.9 dB in BER compared

to the LSTM-based CS scheme. The computational complexity of the proposed

network increases only marginally as the number of active IoT devices increases.

The results of this work have been presented in the following publication [1]:

J1. S. Khan, S. Durrani, M. B. Shahab, S. J. Johnson, S. Camtepe, “Joint User and

Data Detection in Grant-Free NOMA With Attention-Based BiLSTM Network,”

IEEE Open J. Commun., vol. 4, pp. 1499 – 1515, Jul. 2023.

1.5.2 Chapter 3: IoT Device Authentication in Terrestrial Networks

Following detection and identification, the second chapter addresses the authentication

of these IoT devices. Given the resource constraints typical of IoT devices, traditional

cryptographic methods can be impractical. Therefore, this research explores physical

layer security techniques, which utilise the inherent properties of the communication

medium as authentication metrics. This method not only reduces the computational

load on IoT devices but also enhances the security of device communications against

common threats such as spoofing and replay attacks. The main contributions of this

work are summarised as follows.

• Authentication scheme: We propose a lightweight authentication scheme com-

prised of four processes: access time slots generation, spreading pool construction,

seed generation, and authentication decision. The scheme provides continuous au-

thentication by checking the access time slots and spreading pools of the IoT devices

instead of generating and verifying shared keys.

• Reduced overhead and latency: The spreading sequences, utilised by the IoT

devices as part of the grant-free NOMA transmission protocol, are used as the

seed source for access time slot generation and IoT device authentication. Thus,

our proposed scheme does not need seed verification and reconciliation processes,

which incur massive overhead and latency.
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• Improved authentication performance: Our results in the misdetection rate

of illegitimate devices indicate a nearly threefold improvement, false alarm rate

indicates state-of-the-art, and spreading sequence collision rate indicates superior

performance in different settings while boasting a lower complexity compared to

the benchmark schemes. Furthermore, our proposed scheme does not rely on the

physical channel reciprocity assumption, which makes it a suitable authentication

scheme for resource-constraint IoT devices.

The results of this chapter have been presented in the following publications [2, 7]:

J2. S. Khan, C. Thapa, S. Durrani, S. Camtepe, “Access-Based Lightweight Physical-

Layer Authentication for the Internet of Things Devices,” IEEE Internet Things

J., vol. 11, no. 7, pp.11312 – 11326, Nov. 2023.

C1. S. Khan, C. Thapa, S. Durrani, S. Camtepe, “Beyond Key-Based Authentication: A

Novel Continuous Authentication Paradigm for IoTs,” in Proc. IEEE GLOBECOM

Wkshps, Kuala Lumpur, Malaysia, Dec. 2023.

1.5.3 Chapter 4: IoT Device Authentication in Non-Terrestrial Net-

works

The third part of the thesis extends the detection and authentication frameworks to

non-terrestrial environments, specifically LEO satellite networks. This extension is cru-

cial for IoT devices deployed in remote or inaccessible areas, where terrestrial network

coverage is inadequate or absent. The research proposes a decentralised authentication

framework suitable for the dynamic and challenging environment of satellite communi-

cations, addressing the unique demands such as frequent handoffs and variable latency,

thereby ensuring continuous and secure device operation across global scales. The main

contributions of this work are summarised as follows.

• We propose a decentralised and continuous authentication framework that adapts

and modifies the AKMA framework to suit the operational requirements of LEO

satellite-based IoT networks. We propose (i) novel seed generation and seed up-

date and (ii) seed refreshing mechanisms for authentication in LEO satellite-based

IoT networks. Notably, our framework accounts for the constraints of satellite

communications by localising key refreshment mechanisms and employing distinct

transmission patterns for IoT devices. By decentralising AKMA’s key manage-

ment process, we alleviate the synchronisation burden from IoT devices amidst the

frequent handoffs due to orbiting satellites.
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• Our proposed authentication framework enables the satellite to differentiate be-

tween legitimate and illegitimate devices through independent generation of trans-

mission patterns. This approach minimises the reliance on physical channel prop-

erties and mitigates distance-related and correlated physical channel disparities.

• Our results demonstrate significant improvement in the authentication rate of legit-

imate IoT devices and a reduction in the misdetection rate of illegitimate devices.

Our authentication framework achieves these superior results while ensuring lower

bandwidth and computational cost than benchmark schemes.

The results of this chapter have been presented in the following publication [3]:

J3. S. Khan, S. Durrani, C. Thapa, S. Camtepe, “Modified AKMA for Decentralised

Authentication in LEO Satellite-Based IoT Networks,” accepted in IEEE Internet

Things J., Jan. 2025.

1.5.4 Chapter 5: Summary and Future Work

Finally, Chapter 5 provides a summary of the thesis results and makes suggestions for

future research work.



Chapter 2

IoT Device Detection and

Identification

2.1 Introduction

In the first technical chapter, we consider a complex spreading sequences-based grant-

free NOMA scenario, where multiple devices communicate with the AP simultaneously in

the uplink following a burst-sparsity model. To address the AUD problem, we design an

attention-based BiLSTM network, which aims to create a mapping function between the

superimposed received signal at the AP and the indices of active devices in the transmit

signal. The proposed framework does not require active user sparsity or channel state

knowledge to carry out AUD. Using the estimated active user support set, we then design

a MUD framework to find the user sparsity and carry out blind data detection at the

AP.

The choice of BiLSTM with attention over other architectures stems from a careful

consideration of the problem requirements and the limitations of alternative methods.

Traditional feedforward neural networks lack the capability to capture sequential de-

pendencies inherent in the burst-sparsity model, making them less effective for AUD.

Convolutional neural networks, while effective for spatial feature extraction, are not in-

herently designed to handle sequential data efficiently. Vanilla LSTMs, although capable

of modeling temporal dependencies, fail to fully leverage bidirectional information, which

is particularly valuable in detecting the indices of active devices in complex grant-free

NOMA settings.

The rest of this chapter is organised as follows. In Section 2.2, we present the system

model and MUD problem. Section 2.3 describes the proposed attention-based BiLSTM

19
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Table 2.1: Important symbols used in this work.

Variable Description Dimension

K Total number of IoT devices 1× 1

N Total subcarriers 1× 1

S Active number of IoT devices 1× 1

J Number of time slots 1× 1

C Codebook matrix N ×NK
c Spreading sequence N × 1

g Channel N × 1

v Synthesis of transmit symbol and channel NK × 1

ṽ Stacked synthesis of transmit symbol and channel NJK × 1

x Sparse transmit signal NJK × 1

y Received signal NJ × 1

ỹ Stacked received signal NJ × 1

ý Transformed sparse signal K × 1

χ̂ Bits of reconstructed sparse signal K × 1

Γ Active device support set K × 1

Υ̂ Estimated active device support set K × 1

ξ Rearranged codebook matrix NJ ×NJK

scheme and describes the neural network’s architecture. Section 2.4 discusses the net-

work’s training details and complexity analysis. Finally, in Section 2.5, we present the

simulation results to verify the performance gain of the proposed technique. Table 2.1

summarizes the important symbols used in this work, including the dimensions of vectors

and matrices.

2.2 System Model

We consider a spreading-based uplink grant-free NOMA system comprising of an AP

and K IoT devices, as shown in Fig. 2.1. Without loss of generality, all devices and

the AP are assumed to be equipped with a single antenna. We consider an overloaded

system where the number of resource blocks N is less than the number of IoT devices,

i.e., N < K. During transmission, a subset of the K devices sporadically and randomly

become active when they have data to transmit. We adopt the burst-sparsity model in

this work, i.e., some transmissions continue for several consecutive time slots while others

last for one-time slot only [62–64].
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Figure 2.1: Illustration of a typical uplink grant-free NOMA system.

2.2.1 Signal Model

Considering an arbitrary symbol interval, an active device transmits its complex modu-

lated signal towards the AP, which are independent random variables drawn from stan-

dard symmetric discrete constellation set M . For inactive devices, their transmit symbol

is equal to zero. In this work, we consider that the device symbols are spread with a fam-

ily of short complex-valued spreading sequences with low cross-correlation values [49].

These short complex-valued spreading sequences can be generated naturally based on

the binary sequence elements. For instance, for M = 3, each element of the complex

spreading sequence is taken from the set {−1, 0, 1,−1+ i, i, 1+ i,−1− i,−i, 1− i} [49,67].
After modulation, the symbol sk from the kth device is spread onto a spreading

sequence ck = [c1k, c2k, . . . , cNk]
T ∈ CN×1 which is randomly and independently selected

from a pre-defined set. The received signal y at the AP is the superposition of all signals,

given as

y =

K∑
k=1

diag(ck)gksk +w = Cv +w, (2.1)

where gk = [g1k, g2k, . . . , gNk]
T ∈ CN×1 denotes the channel vector between the AP and

the kth device over N sub-carriers, and w ∼ CN (0, σ2I) represents the complex Gaussian

noise vector. Moreover, C = [diag(c1),diag(c2), . . . ,diag(cK)] ∈ CN×NK refers to the
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codebook matrix of all devices, and v = [vT
1 , . . . ,v

T
K ]T = [(s1g1)

T , . . . , (sKgK)T ]T ∈
CNK×1 is the synthesis of the transmit symbols and channel vectors.

2.2.2 Consecutive-Time Slot Dynamic Model

Exploiting the sparsity in the data transmission (i.e., only a subset of devices wake

up to transmit) and the temporal correlation of the device activity pattern (i.e., data

transmission is bursty in general), we can formulate the vector v as a sparse vector and

extend our system model in (2.1) to a continuous-time slot model.

The idea is to utilise the bursty nature of ṽ =
[
v[1],v[2], . . . ,v[J ]

]T ∈ CNJK×1 where

v[j] is the signal at the j-th time slot, to retrieve it from the received signals ỹ =[
y[1],y[2], . . . ,y[J ]

]T ∈ CNJ×1, in the J successive time slots. This formulation helps in

capturing the temporal correlation of the active devices by detecting the transmit signals

v in the continuous-time slots. The stacked received signal vector ỹ can be represented

as

ỹ =


C[1] 0 · · · 0

0 C[2] · · · 0
...

...
. . .

...

0 0 · · · C[J ]



v[1]

v[2]

...

v[J ]

+


w[1]

w[2]

...

w[J ]

 , (2.2)

where C is the equivalent code-book matrix of all devices, which contains the complex

spreading sequences of all K devices, v is the composite of the transmitted symbol and

channel vector, and w is the Gaussian noise vector.

The AP receives a multi-device vector ỹ with no knowledge of the active transmitting

devices or locations of the non-zero symbols. The active device support set Γ[j] varies

over different time slots considering the device’s random transmission in a grant-free

fashion. With this in mind, let u[j] = [s1, s2, . . . , sK ]T correspond to the total devices in

the j-th time slot. Then, the active device support set1 Γ[j] of the signal x[j] in the j-th

time slot is defined as [63]

Γ[j] = k | u[j]
k ̸= 0, 1 ≤ k ≤ K. (2.3)

From this, the number of transmitting active devices is defined through the cardinality

1The actual device support set Γ[j] is utilised as ground truth to reduce the misclassification rate during
network training only. In the online deployment, the proposed BiLSTM network is used to estimate the
active device support set. This will be explained in the following sections.
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of the active device support set Γ[j], given as [63]

S[j] =
∣∣∣∣∣∣Γ[j]

∣∣∣∣∣∣
0
. (2.4)

Since IoT traffic is not entirely random and often consists of data bursts and traffic

patterns, in this work, we consider the burst-sparsity model where only a subset of active

devices in the previous time slot also transmit in the next time slot. That is, only a

subset of indices in Γ[j−1] are present in Γ[j]. Therefore, to quantify the commonality of

active devices transmitting in consecutive time slots, we define η as the level of temporal

correlation between the previous time slot Γ[j−1] and the current time slot Γ[j]. It is

given as

η =

∣∣∣∣Γ[j−1]
⋂

Γ[j]
∣∣∣∣
0∣∣∣∣Γ[j]

∣∣∣∣
0

. (2.5)

Note that in (2.5), η characterises the overlapping level of the active devices transmit-

ting in consecutive time slots. For instance, when η = 0.5, half of the devices transmit in

consecutive time slots ≥ 2, whereas the remaining transmit only once during the whole

process. In Section V, we will show how the variation of temporal correlation η affects

the overall system performance.

2.2.3 Multi-User Detection Problem

When multiple active devices communicate with the AP simultaneously in a grant-free

manner, the first task for the AP is to detect the active devices that contributed to the

received signal. Therefore, the identification of active devices leads to the problem of

finding the support of the transmitted signal.

In this regard, the rows in (2.2) can be rearranged. We also introduce an active

device criterion δ ∈ 0, 1, where δ = 1 and δ = 0 correspond to active and inactive

devices, respectively [66]. Using this, the stacked received signal vector ỹ can be written

as

ỹ =
[
ξ1 · · · ξK

]
δ1x1

...

δKxK

+


w[1]

...

w[J ]

 = ξx+w, (2.6)

where ξ = [ξ1, ξ2, . . . , ξK ] ∈ CNJ×NJK , and x = [δ1x
T
1 , δ2x

T
2 , . . . , δKxT

K ]T ∈ CNJK×1,

such that for any kth device, xk = [(s
[1]
k g

[1]
k )T , (s

[2]
k g

[2]
k )T , . . . , (s

[J ]
k g

[J ]
k )T ]T and ξk =

[diag(c
[1]
k ),diag(c

[2]
k ), . . . ,diag(c

[J ]
k )], respectively. From (2.6), it is inferred that out of

K, only a subset of devices, say S, are active. This means that the sparse vector x has S
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nonzero blocks corresponding to the S active devices. Therefore, ỹ in (2.6) can be repre-

sented as a linear combination of S submatrices of ξ1, . . . , ξK perturbed by the noise [66].

We assume the codebook entries of ξ are available at the AP [45]. However, the AP does

not know which spreading sequence is chosen by the different active devices. Thus, the

AP needs to identify the sub-matrices ξS , which are analogous to ξ, by processing ỹ.

From this, the MUD problem becomes a 2-dimensional CS problem, which is common

in the CS paradigm [100]. With this in mind, the following MUD problem is readily

articulated as an active device support estimation problem, given as

Υ = arg min
|Υ|=S

1

2
||ỹ − ξΥxΥ||22 . (2.7)

This detection problem in (2.7) can be solved using classical CS approaches. The

approaches based on exhaustive searches, such as ℓ1-minimisation [101], provide the-

oretical performance gains but suffer from heavy computational complexity. The ap-

proaches based on greedy algorithms [102] have comparably lower complexity but result

in a sub-optimal solution and require a larger number of measurements for signal recov-

ery. The biggest drawback of conventional CS-based schemes is that they assume perfect

knowledge of the channel and active device sparsity levels. Furthermore, the enormous

computational complexity and the latency of iterative algorithms make them a practical

solution only for a small number of active devices. When there is a larger number of

active devices, the performance of conventional CS-based schemes degrades due to their

sole dependence on the residual vector in each iteration2. Due to this, as the number

of active devices increases, conventional CS-based schemes are not suitable solutions to

facilitate grant-free communication. This motivates us to pursue a ML-aided solution

presented in the next section.

2.3 Deep Learning aided MUD

To tackle the MUD problem in Section II-C, we propose a solution using deep learning.

In essence, we aim to delineate a nonlinear mapping using deep learning to create a

pattern between the stacked received signal ỹ and the support of x and perform MUD

2A nonzero submatrix of ξ with an index chosen at the i-th iteration is given as ϵ =

arg max
k=1,··· ,K

1
2

∣∣∣∣ξHk ri−1
∣∣∣∣2

2
, where ri−1 = y − ξi−1

Υ x̂i−1 is the i-th residual vector and x̂i−1 = ξ†
Υi−1y is

an approximate of the transmitted signal x in the (i − 1)-th iteration. It is of understanding that the
performance of active user support identification is influenced primarily by ξ, which is generated through
the codebook C, and residual vector r(·).
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Figure 2.2: Detailed architecture and working of the proposed attention-based BiLSTM
network.

at the AP. The resulting active device support estimation problem Υ̂ is then defined as

Υ̂ = g(ỹ,Θ), (2.8)

where Θ represents the weights and corresponding biases of the learning architecture.

2.3.1 Learning Architecture

In this work, we adopt an attention-based BiLSTM network to solve the MUD problem,

as illustrated in Fig. 2.2. The attention mechanism is discussed in Section III-B, while in

this section, we discuss the BiLSTM network. The motivation for adopting the BiLSTM

network is as follows.

Standard unidirectional LSTM networks undertake sequences in forwarding temporal

order, ignoring future context. This is because unidirectional LSTM only preserves the

information of the previous time steps since it has exclusively seen inputs from the past.

On the other hand, BiLSTM networks take unidirectional LSTM networks one step

further by setting up a second LSTM layer, where the gradients in the hidden connections

flow in the opposite temporal direction. That is, BiLSTM runs the inputs in two ways,

one from past to future (left to right, i.e., forward) and another one from future to past
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(right to left, i.e., backward). This gives BiLSTMs the ability to exploit more information,

thereby simultaneously obtaining contextual features from forward and reverse temporal

directions. In essence, more features from both directions are captured for mapping

active devices transmitting in consecutive time slots. The LSTM in the reverse direction

is calculated in the same fashion as the forward direction. Noticeably, since the direction

is reversed, the time information is passed from future to past.

For input ỹt at the current time step t, the BiLSTM network calculation is given by

−→
hf = σ(Wf ỹt +Wfht−1 + bf ), (2.9)

←−
hr = σ(Wrỹt +Wrht+1 + br), (2.10)

where σ represents the activation function, t − 1 and t + 1 represent the forward and

reverse direction time steps respectively, ht−1 and ht+1 represent the previous and next

hidden states respectively, Wf and Wr represent the forward and reverse direction input

weights respectively, and bf and br represent the forward and reverse direction learnable

bias parameter respectively.
−→
hf and

←−
hr represent the forward and reverse direction LSTM

network outputs respectively. Finally, the output of the BiLSTM zt is

zt = σ(Wz
−→
hf ⊕Wz

←−
hr + bz) = σ(Wzh̃t + bz), (2.11)

where Wz represents the BiLSTM output weights, bz represents the BiLSTM output

learnable bias parameter, and h̃t is the concatenated hidden state of the forward and

reverse direction LSTMs.

Fig. 2.2 shows the proposed attention-based BiLSTM network applied to our MUD

problem. For each training iteration, we use U training data copies ỹ(1), · · · , ỹ(U). Next,

since the stacked received signal ỹ(u) is a complex-valued modulated vector, we split

the real and imaginary parts and use ŷ(u) = [ℜ(ỹ(u)1 ) · · · ℜ(ỹ(u)N ),ℑ(ỹ(u)1 ) · · · ℑ(ỹ(u)N )] as an

input vector to the network. With this in mind, the unit output in (2.11) is substituted

as

z
in,(u)
t = σ(Win

z ŷ
(u)
t + bin

z ), for u = 1, · · · , U, (2.12)

where Win
z ∈ Rα×2NJ is the initial weight, ŷ

(u)
t ∈ R2NJ×1 is the input vector, and

bin
z ∈ Rα×1 is the input learnable bias term.

In this work, we employ batch normalisation to help coordinate the update of mul-

tiple layers by standardising the inputs of each layer to have fixed means and variances.

This is important because when active devices experience different wireless channels and
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transmit their data in a grant-free manner, the resulting stacked received signal ỹ has

substantial variations. These significant variations make it difficult for the network to

learn the device activation pattern. By standardising the inputs of each layer, batch

normalisation reduces the variations and helps to overcome this difficulty. Thus, the

output vectors U from (2.12) are put together in the mini-batch B = [z
(1)
t · · · z

(U)
t ]T .

Once arranged in a mini-batch, these vectors are scaled and shifted using their respective

hidden weights and batch normalised. The output for each element z
in,(u)
t,i of the batch

normalisation (BatchNorm) is given as

z̃
(u)
t,i = β

zin,(u)t,i − µB,t,i√
σ2B,t,i

+ γ, for i = 1, · · · , α, (2.13)

where µB,t,i =
1
U

∑U
u=1 z

in,(u)
t,i calculates the batch-wise mean, σ2B,t,i =

1
U

∑U
u=1(z

in,(u)
t,i −

µB,t,i)
2 calculates the batch-wise variance, β is used as a scaling parameter, γ is used as

the shifting parameter, and α represents the width of the hidden layers.

The proposed scheme learns to create a mapping function between the stacked re-

ceived signal ỹ and the current active device support set Γ. However, the estimate of

the current active device support set Υ̂ is vastly agitated by the activation patterns of

the neurons, which in turn are dependent on perturbations and precision errors. This

issue is further compounded as the spreading sequences in the sensing codebook matrix

ξ are correlated. Accordingly, the estimate of the current active device support set Υ̂

might not be accurate and will misclassify in the presence of random perturbations. In

addition, when the device activity pattern is similar in consecutive time slots, the net-

work is more prone to overfitting due to the unchanging device activation pattern. We

use the ReLU activation function and dropout layer to address these issues. By using

the ReLU activation function, the computed weights at every iteration are ranged, i.e.,

f(x) = max(x, 0), which is then used as

ẑ
(u)
t = f(z̃

(u)
t ). (2.14)

In the dropout layer, the activated neurons in a hidden layer are randomly halted with

a probability ρdrop, given as

ž
(u)
t = ẑ

(u)
t ⊙ d(u), d

(u)
i ∼ Bern(ρdrop), (2.15)

where d
(u)
i is the i-th element of the dropout vector d(u), and ⊙ is the Hadamard prod-
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uct. Bern(ρdrop) is the Bernoulli random variable which takes the value 0 with the

dropout probability ρdrop and 1 with the probability 1− ρdrop. The dropout mechanism

deliberately makes the training process noisy by deactivating neurons randomly, forcing

the remaining neurons to take more responsibility in creating a different path for the

gradient flow. This random dilution of neurons provides rigorous circumstances where

network layers co-adapt to rectify mistakes from prior layers, which helps create a more

generalised network capable of estimating the current active device support set with

more accuracy. Therefore, removing incoming and outgoing connections of the dropped

neurons with a random probability systematically resolves the active device activation

patterns’ similarity among correlated support sets.

After the dropout layer, the output vector ž makes its way through multiple hidden

layers3. In subsequent, every hidden layer comprises the BiLSTM layer, a BatchNorm

layer to reduce the variation of z[l], a ReLU activation function applied to z̃(u) to deter-

mine whether the information (ẑ
[l]
1 , . . . , ẑ

[l]
α ) generated by the hidden unit is activated or

not, and finally a dropout layer to overcome overfitting of the network is applied (see

Fig. 2.2). The output of the lth hidden layer’s BiLSTM z
[l]
t is

z
[l]
t = W[l]

(
l−1∑
i=1

ž
[i]
t

)
+ b[l], (2.16)

where W[l] ∈ Rα×α and b[l] ∈ Rα×1 are the weight and bias in the lth hidden layer,

respectively.

2.3.2 Attention Mechanism

Fig. 2.3 shows the working of the attention mechanism and its integration with the

BiLSTM network architecture. The motivation for adopting the attention mechanism

is twofold: (i) a neural network that creates a mapping function for the active device

detection problem in (2.7) by analyzing the whole input at every step ignores the temporal

correlation of the device activity pattern and (ii) with the increasing number of active

devices, it becomes difficult for a neural network to learn its activation pattern due to its

inherent sequential path architecture, causing problems such as vanishing and exploding

gradients [103].

The attention mechanism allows the neural network to apply context to specific parts

of the data at every time step. That is, instead of finding the active devices in all of the

input vectors altogether, a neural network with an attention mechanism breaks down the

3For notational simplicity, in the proceeding sections, the training data index u has been omitted.
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Figure 2.3: The proposed BiLSTM module with an attention mechanism.

data, applies a contextual vector to it, and then gives a score to the parts where active

devices are present and transmitting consecutively. This mechanism brings additional

temporal-based reasoning into the overall architecture for active device detection, helping

the neural network load more active devices for detection.

The output of the BiLSTM network is computed as a weighted summation of the

output of the BiLSTM network ž
(L)
t at time step t as

z̆
[L]
t =

K+1∑
k=1

ζkž
[L]
t−(k−1), (2.17)

where ζk is the temporal attention value at time step t− (k − 1), computed as

ζk =
esk∑K
k=1 e

sk
, (2.18)

where the scores s = [s1 · · · sK ]T indicate the repeated activation pattern of active devices

in the time slots, which is obtained as

sk =Wrel tanh(Waž
[l]
t + Zaž

[L]
t + ba). (2.19)

where ž[l] is the output of the previous hidden layers, and Wa and Za are the attention

learnable parameters that learn to project each context element and hidden state into a

latent space and Wrel denotes the relevance parameter [104].

Evidently from (2.18) and (2.19), at time step t, ζ depends on the input ž
(l)
t . Fur-

thermore, ζ is also dependent on the hidden variables ž
[L]
t in the previous and current

time step t. The attention value ζ can also be regarded as activating the active device

detection gate. That is, the amount of information flow into the BiLSTM network is con-

trolled by setting the gates. With this in mind, the final prediction result is influenced
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by a larger activation value, which results in a larger flow of information. It should also

be noted that the standard LSTM network cannot detect many active devices concerning

the previous activation pattern due to the large memory overhead occurring. The BiL-

STM network with an attention-based mechanism can capture device activation patterns

in consecutive time slots with long-range dependencies. The information not required

can be suppressed to improve the accuracy and efficiency of active device detection.

After passing through the L BiLSTM layers and the attention-based mechanism, the

FC layer at the output produces K values corresponding to the total number of devices.

Thereby, the output vector zout is produced as

zout = Wout
L∑
l=1

z̆[l] + bout, (2.20)

whereWout is the corresponding weight and bout the bias, respectively. The softmax layer

then maps K output values into K probabilities (p̂1, · · · , p̂K) representing the likelihood

of being the true support element in the estimated active device support set Υ̂. The kth

probability p̂i calculated through softmax is given as

p̂k =
ez

out
k∑K

k=1 e
zoutk

. (2.21)

Finally, an estimate of the active device support set Υ̂ is obtained by picking from the

K elements those having a probability greater than the threshold τ , given as

Υ̂ =

 1 p̂k ≥ τ

0 otherwise
. (2.22)

Once Υ̂ in (2.22) is obtained, the estimated support Ŝ is then extracted through the

cardinality of the estimated active device support set, i.e., Ŝ = ||Υ̂||0 for the j-th time

slot. We later show how the estimated active device support set and estimated support

are used to evaluate the MUD performance and device identification accuracy.

2.4 Model Training, User Detection, and Complexity Anal-

ysis

In this section, we discuss the model training, which in turn is used for signal reconstruc-

tion, and find the computational complexity of the proposed attention-based BiLSTM
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network.

2.4.1 Model Training

During the offline training phase, the network’s parameters set Θ∗ are computed by

minimising the loss function J (Θ) (i.e., Θ∗ = arg minΘ J (Θ)). During every training

iteration, the network parameters are updated using the gradient descent method when

the loss function J (Θ) is differentiable. Specifically, using the Adam optimiser, the

network parameters Θi are updated in the direction of the steepest descent in the i-th

training iteration, given as

Θi = Θi+1 −
ψmi√
vi + ϵ

, (2.23)

where ψ is the learning rate determining the step size, and ϵ is a smoothing term that pre-

vents division by zero. Furthermore, mi and vi are estimates of the mean and uncentered

variance of the gradients, respectively, defined as [9]

mi = δ1mi−1 + (1− δ1)∇J (Θi)

vi = δ2vi−1 + (1− δ2)∇[J (Θi)]
2,

(2.24)

where δ1 and δ2 are the decay rates of the moving average. The moving average pa-

rameters help in controlling the step size of the optimiser in order to identify the global

optimum solution of the training set correctly and prevents the network from looping in

a local solution when the training data is not sparse [9].

Recalling that the final output of the attention-based BiLSTM network is the K-

dimensional vector p̂ whose element represents the probability of being the estimated

support element from the estimated active device support set Υ̂. In this regard, p̂ =

[p̂1 · · · p̂K ] needs to be compared against the true probability p in the loss function calcu-

lation. We employ the cross entropy loss J (p, p̂,Θ) for network training, defined as [103]

J (p, p̂,Θ) = − 1

K

(
K∑
k=1

pk log p̂k

)
+ λ

K∑
k=1

Θ2
k, (2.25)

where pk is the ground truth (actual active device), p̂k is the estimate (estimated active

device) of the attention-based BiLSTM network, and λ is the L2 regularisation term

which is used for weight decaying and in turn, improves the generalisation performance

of the network.
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2.4.2 Blind Data Detection of Active Devices

In grant-free transmission, the codebook or the spreading sequence is unknown before

the signal is detected. This can significantly increase the detection complexity. However,

finding the active devices from the received signal can also recover their adopted spreading

sequences since a local copy of the spreading sequences is available at the AP. Thus

the detection and decoding computational complexity can be reduced significantly while

keeping the practical constraints of grant-free NOMA systems intact.

First, AUD is carried out as in (2.22) where the estimated active device support set

Υ̂, and the estimated sparsity level Ŝ is obtained from the attention-based BiLSTM

network using the stacked received signal ỹ at the AP. Next, using this estimated active

device support set Υ̂, the stacked received signal ỹ is transformed into a sparse signal

ý, which contains received data for the estimated active devices. Having knowledge of

the estimated active devices and their received bits, the spreading sequences employed

by these active devices are obtained by selecting the estimated Ŝ spreading sequences

having the highest correlation probability with the spreading sequences at the AP4 [107].

Once the spreading sequences employed by the active devices are calculated, blind

detection can be carried out. In blind detection, the active device channels are unknown,

while the spreading sequences are known. Therefore, based on the sparse signal ý, which

includes the statistical information of channels of all active devices, the blind MMSE

weight w can be obtained without the knowledge of device channels. Thereby, the MMSE

weight can be calculated as [99]

wT = (ĝT ĝ + σ2I)−1ĝT , (2.26)

where ĝ is the estimated channel between the AP and the devices. After rearranging

(2.6), the transmitted bits of the reconstructed sparse signal χ̂ for the active devices can

then be estimated as

χ̂ = wT ý

ξ
. (2.27)

By doing so, the active devices’ bits are estimated, and the sparse signal ý is recon-

structed without the need for explicit channel estimation. The entire process is sum-

marised in Algorithm 1.

4Due to the spreading sequences being randomly selected from a pool, there is a possibility of two
or more active devices selecting the same spreading sequence, causing spreading sequence collision [105].
However, since we have employed complex spreading sequences, and the use of channels of different
devices are different, such spreading sequence collision does not have a large impact on the performance
of blind detection [106].
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Algorithm 1 The Proposed Attention-based BiLSTM Network.

Input Received signal ŷ
Output Estimated active user support set Υ̂, estimated sparsity level Ŝ, bits of recon-
structed sparse signal χ̂
Initialisation ý = 1, · · · ,K

Active device support and sparsity estimation
1: for j = 1 to J do
2: Obtain p̂ by passing ŷ[j] into the attention-based BiLSTM network
3: Υ̂[j] = k | p̂k ≥ τ, 1 ≤ k ≤ K
4: Ŝ[j] =

∣∣∣∣∣∣Υ̂[j]
∣∣∣∣∣∣
0

Sparse signal reconstruction
5: for k = 1 to K do
6: if p̂k ≥ τ then

7: ý
[j]
k = ŷ

[j]
k

8: else
9: ý

[j]
k = 0

Blind data detection of active devices
10: wT = (ĝT ĝ + σ2I)−1ĝT

11: χ̂[j] = wT ý[j]

ξ mapped to the nearest symbol

Return Υ̂, Ŝ, χ̂

2.4.3 Computational Complexity

In this subsection, we evaluate the computational complexity of the proposed attention-

based BiLSTM network. We evaluate the complexity using the floating-point operations

per second (flops) [66], taking into account the complexity of the hidden and deep learning

layers of the proposed BiLSTM network at the j-th time slot.

In the first layer of the attention-based BiLSTM network, the input vector has a

dimension of ŷ ∈ R2N×1, whereas the weight and bias have the dimensions Win ∈ Rα×2N

and bin ∈ Rα×1 respectively. Furthermore, we know that BiLSTM has four gates, which

do a forward pass and a backward pass, thereby bringing the generic flop computation

per BiLSTM block to

Cin = 8× (4N − 1)α+ α = 32Nα− 7α. (2.28)

Next, in the BatchNorm, the element-wise scalar multiplication and addition are

carried out twice for normalisation. Thereby, the complexity Cbn of BatchNorm is given
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Table 2.2: Computational complexity comparison for different sparsity levels (the total
number of potential devices K = 200, the number of subcarriers N = 100, the number
of hidden layers L = 3, width of hidden layer α = 1000).

Technique Floating point operations (flops)
Complexity for different sparsity levels

S = 10 S = 20 S = 30 S = 40

LS-OMP 2SN2K + S4+6S3+7S2+2S
12 N3 + S(S + 1)N2 − S 1.41× 109 1.76× 1010 8.15× 1010 2.46× 1011

D-AUD
2Lα2 + (4N + 7L+ 2N + 4)α+ (S + 3)K − S(S+1)

2 − 1
+2N + S(143 N

3 +N2 −N)
5.33× 107 1.00× 108 1.46× 108 1.93× 108

LSTM-CS
2α2(4L+ 3) + 2α(8N +K) + α(3L− 1) + 3K − 1

+2N + S(143 N
3 +N2 −N)

7.87× 107 1.25× 108 1.72× 108 2.19× 108

Proposed
2α2(8L+ 3) + 2α(16N +K)− α(L+ 3) + 3K − 1

+2N + S(143 N
3 +N2 −N)

1.04× 108 1.51× 108 1.97× 108 2.46× 108

as

Cbn = 4α. (2.29)

Subsequently, in the proceeding hidden layers’ BiLSTMs, the hidden weight W ∈
Rα×α is multiplied with the input vector and then the bias term b ∈ Rα×1 is added to

it. Next, after passing through the subsequent BatchNorm for each element, the weights

are passed through the ReLU activation function. Next, for generalisation, the dropout

vector d is multiplied by the ReLU output ẑ. Consequently, the complexity of the L

hidden layers Chide is given as

Chide = L(8× (2α− 1)α+ α+ 4α+ α+ α) = 16Lα2 − Lα. (2.30)

Following this, the Attention layer performs weighted matrix multiplications with the

input and previously sampled data, adds a bias term to the latent data, and multiplies

the learnable parameters matrix to compute the scores. Thus, the complexity Catten of

the Attention layer is

Catten = α(2α− 1) + 4α2 + α = 6α2 (2.31)

Next, the FC layer at its output has its weightsWout ∈ RK×α and bias term b ∈ RK×1

multiplied with the weights from the L hidden layers and the Attention mechanism.

Thereby, the FC layer at the output has a complexity Cout given as

Cout = (2α− 1)K +K = 2Kα. (2.32)

The softmax layer computes the K probabilities of potential devices, as in (2.21). By

doing so, the softmax complexity Csm is given as

Csm = 3K − 1. (2.33)
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From (2.28) to (2.33), the final complexity of the proposed attention-based BiLSTM

network is

CABA =Cin + Cbn + Chide + Catten + Cout + Csm
=2α2(8L+ 3) + 2α(16N +K)− α(L+ 3) + 3K − 1.

(2.34)

For an unbiased analysis, we compare the proposed attention-based BiLSTM net-

work with two deep learning-based techniques, D-AUD [66] and LSTM-CS [108], and a

conventional technique, least squares orthogonal matching pursuit (LS-OMP) [109] for

complexity comparison in Table 2.2. In addition, for a fair comparison, the MMSE es-

timation term has been added to D-AUD and LSTM-CS techniques for signal detection

purposes, such that CMMSE = 2N +S(143 N
3+N2−N). We examine the computational

complexity in flops for different sparsity levels. We observe that the complexity of the

proposed attention-based BiLSTM network is slighter higher than D-AUD and LSTM-

CS but much lower than that of conventional approaches. This is because the D-AUD

technique utilises vanilla FC layers for its network, which do not exploit the temporal

correlation of data. Due to this reason, the performance of such networks might degrade

with a higher number of active devices. The LSTM-CS uses unidirectional LSTM and

therefore has lower computational complexity than the proposed attention-based BiL-

STM network. However, as shown in Section V, this results in performance degradation.

It is important to note that the complexity of ML-based techniques depends heavily on

the network parameters (L and α), but not the system parameters (the number of active

devices S, and the total number of devices K). Thus, when S increases from 10 to 20,

the computational complexity of ML networks increases marginally, but that of LS-OMP

increases sharply. Therefore, in a practical grant-free NOMA setting with a higher num-

ber of active devices, the ML schemes are more competitive in computational complexity

than conventional schemes.

2.4.4 Convergence

We examine the validation loss Jv(Θ) for a different number of hidden layers L for the

proposed network, as shown in Fig. 2.4. We can see that a lower L results in a network

being unstable during training, whereas a higher L results in a more stable network but

with a slower convergence rate. Thus, we adopt L = 3 for training dataset generation

and also the simulations in this work. Note that the sudden increase in validation loss

for the L = 1 curve is due to the model overfitting to the training data, causing it to fit

noise and outliers and perform poorly on the validation set.
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Figure 2.4: Validation loss Jv(Θ) for different number of hidden layers L, with total
number of devices K = 200, number of subcarriers N = 100, and number of active
devices S = 20.

2.4.5 Training Dataset Generation

In order to determine the optimal network mapping function g∗ for the stacked received

signal ỹ and support of the x, a comprehensive training dataset is required. A good

option in this regard is acquiring a dataset produced using real received signals; however,

there is no open-source dataset for the grant-free NOMA scenario at this stage.

In this work, the training set is generated artificially by sampling values from (2.6)

while keeping the realistic system constraints intact. In essence, during the offline training

stage, U training data copies of the stacked received signal vector ỹ and the support of

x are used as the dataset for network training. With sufficient training data copies, a

balanced dataset is obtained, which captures the practical transmission nature of IoT

devices. The balance is achieved by ensuring equal representation of active and inactive

device scenarios, varying SNRs, and diverse transmission patterns. These factors are

carefully considered to mirror the real-world operational characteristics of IoT devices.

In this work, the dataset consists of 132,000 artificially generated training samples and

33,000 validation samples.

The parameter values used for training dataset generation are summarised in Ta-

ble 2.3. In particular, in the training dataset, the number of active devices is S = 20

among the K = 200 potential devices, and the number of subcarriers is N = 100. The

temporal transmission nature of devices is captured based on (2.5), and η is set to 0.5.
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Table 2.3: Parameter values used in generating the training dataset.

Parameter Value

Modulation QPSK

Total devices, K 200

Total subcarriers, N 100

Active devices, S 20

Channel, gk Rayleigh fading, CN (0, 1)

Multiple access signature Random selection

Time slots, J 7

Temporal correlation, η 0.5

Signal-to-Noise Ratio (SNR) distribution 0 dB to 20 dB

Detection threshold, τ 0.5

Hidden layers, L 3

Hidden layer width, α 1000

Activation layer, σ ReLU

Learning rate, ψ 0.001

Batch size, B 20

Dropout probability, ρdrop 0.3

Validation split 20%

Moving average decay rate, δ1, δ2 δ1 = 0.9, δ2 = 0.99

The length of the time frame is J = 7. The number of hidden BiLSTM layers is set as

L = 3, each with a width of α = 1000, each followed by a ReLU activation function.

The attention mechanism is placed before the final hidden layer. The output layer is

preceded by an FC layer whose width corresponds to the number of classes. The dropout

probability for the dropout layer is set to ρdrop = 0.3. The batch size is set as 20, while

Adam is the optimiser. The value for the latent learning rate ψ is set to 0.001.

2.5 Results and Discussion

In this section, we evaluate the performance of the proposed attention-based BiLSTM

network in solving the MUD problem. We also plot the performance of four benchmark

solutions: two traditional CS solutions, LS-OMP [109] and dynamic CS-based MUD

method [62], one ML-based LSTM-CS MUD method [108] and the Oracle least squares

(LS) algorithm.

The motivation for considering these four benchmarks is as follows. We consider the

LS-OMP as it is the standard CS technique that is always considered as one of the bench-

marks in this research field. The dynamic CS-based and ML-based LSTM-CS methods
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are considered because they take temporal correlation into account during MUD. Ad-

ditionally, the ML-based LSTM-CS method demonstrates the advantage gained from

considering the proposed BiLSTM over vanilla LSTM. The Oracle LS algorithm is con-

sidered as it provides the theoretical performance lower bound, although it is impractical

in real-world situations where perfect knowledge is unavailable.

For a fair comparison, we make the following assumptions in the implementations of

the four benchmark schemes:

• For the two traditional benchmark solutions, the sparsity level is assumed to be

known at the AP due to the assumption of the channels being perfectly known;

only the sparse support location is unknown at the AP.

• For the ML-based LSTM-CS MUD method, the core working of the method is

adopted from [108], but the LSTM layer is adapted to our architecture (as in Fig.

(2)) for a fair comparison.

• For the ML-based LSTM-CS MUD method, we assume that it does not need any

channel state information (CSI), i.e., it is unaware of the sparsity level, sparse

support location and the channels.

• For the Oracle LS algorithm, we assume perfect knowledge of the CSI, user sparsity

level and sparse support location.

In the simulations, unless otherwise stated, K = 200 potential devices simultaneously

share N = 100 orthogonal resource blocks. Thus, the OF5 is 200%. The number of active

devices is in the range S = 10−40. We employ M = 4-ary complex spreading sequences,

where both the real and imaginary parts take values from the set {−2,−1, 0, 1}. For

every time slot, there are S number of active devices, where the active device support

set Γ[j] in each time slot has S/2 devices transmitting in the next time slot, i.e., η = 0.5,

while the remaining are randomly selected from {1, 2, · · · ,K}. The number of time slots

is fixed at J = 7 to conform to the LTE-Advanced protocol [110]. The signals being

transmitted are modulated by Quadrature Phase Shift Keying (QPSK). Furthermore, all

channels are assumed to follow an independent Rayleigh fading, and the channel fading

coefficient is generated following gn,k ∼ CN (0, 1) [111–113]. The path loss between the

AP and the k-th device is modeled as 128.1 + 37.6 log10(di), where di is the distance (in

km) [110]. The results are averaged over 1000 Monte Carlo trials.

5The OF is defined as the ratio of the number of potential devices to the number of available resource
blocks in the system, i.e., OF (%) = K

N
× 100.
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The simulations are carried out on the Gadi supercomputer of the National Compu-

tational Infrastructure (NCI), Australia, utilising 48 cores of Intel Xeon Platinum 8274

(Cascade Lake) processors, 192GB of random access memory and NVIDIA V100 GPU.

The simulations are carried out on MATLAB 2021b.

2.5.1 Performance Metrics

In order to appropriately evaluate the performance, including the quality of support

estimation, device identification, and multi-device data detection, we use the following

metrics: the detection probability (ρd), the accuracy, and the average BER as perfor-

mance metrics. Given the bits of the reconstructed sparse signal χ̂
[j]
k for device k at the

j-th time slot, the performance metrics are defined as follows.

• Detection probability: This metric evaluates the performance of support estimation.

It is defined as the ratio of the number of detected active devices to the number of

all active devices, given as

ρd =
1

S

∑
k∈Γ[j]

1
χ̂

[j]
k ̸=0

. (2.35)

• Accuracy: This metric evaluates the performance of the quality of support estima-

tion for device identification. It is defined as the ratio of the number of correctly

identified active devices to the number of all active devices, expressed as a % and

given as

Accuracy (%) =
1

S

∑
k∈Γ[j]

1
Γ[j]==Υ̂[j] × 100. (2.36)

• Average BER: This metric evaluates the performance of multi-device data detec-

tion. It is defined as the ratio of incorrectly recovered bits transmitted by the active

devices to all bits transmitted by the active devices. It should be noted that the

average BER includes a penalty for decoding the wrongly detected active devices.

2.5.2 Support Estimation

Fig. 2.5 plots the detection performance, ρd, versus the SNR (dB) for S = 10 and

S = 20, with K = 200, and N = 100. The following trends can be observed from the

figure. The Oracle LS gives the theoretical best performance (100% detection proba-

bility for the considered scenario), which is the same for all SNR values. As the SNR
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(a) S = 10 (b) S = 20

Figure 2.5: Probability of detection, ρd, versus SNR (dB) for the number of active devices
S, with the total number of potential devices K = 200, and the number of subcarriers
N = 100.

increases, the performance of all the schemes slowly approaches to that of the Oracle LS.

The LS-OMP performs the worst since it ignores the temporal correlation in the device

activation history. The dynamic CS-based MUD method performs better than LS-OMP

since it considers the temporal correlation in the device activation history. The ML-

based LSTM-CS method performs better than the two traditional algorithms but cannot

perform similarly to the proposed BiLSTM network due to its unidirectional architec-

ture. The proposed attention-based BiLSTM network outperforms all these benchmark

algorithms, i.e., it exhibits a higher detection probability of successfully identifying the

correct number of active devices against all other schemes. For instance, the proposed

attention-based BiLSTM network achieves the Oracle LS detection performance at SNR

= 8 dB and SNR = 12 dB, respectively, for S = 10 and S = 20 active devices. It should

be noted that the proposed attention-based BiLSTM network is unaware of the device

sparsity level and detects the active devices based on the received signal only, compared

to other traditional algorithms, which are based on the assumption of the known channels

and device sparsity level. As the number of active devices S increases from 10 to 20,

the detection performance of the proposed attention-based BiLSTM network decreases

gradually. The decrease in performance is attributed to the introduction of additional

interference, variability, and overlapping patterns. These complexities pose challenges

for the model to effectively capture and learn the underlying patterns and relationships
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Table 2.4: Device identification accuracy versus the number of active devices S, with the
total number of potential devices K = 200, the number of subcarriers N = 100, and SNR
= 6 dB.

# of Active
Devices

Accuracy (%)
LS-OMP Dynamic-CS LSTM-CS Proposed

10 71.92 84.57 90.25 94.85

15 64.10 79.29 86.51 92.54

20 59.75 77.47 80.09 84.84

25 44.40 72.74 73.84 74.99

30 36.52 47.94 54.16 62.38

35 4.29 32.84 40.21 46.97

40 0 15.14 22.52 29.31

within the data6.

2.5.3 Device Identification

Device identification can help the AP prioritise service provision considering the available

resources and provide access to devices based on their priority. Table 2.4 shows the

accuracy of correctly identified active devices at K = 200, N = 100, and SNR = 6 dB.

It should be noted again that the traditional schemes in this regard assume complete

knowledge of the device sparsity level and that their accuracy is based on identifying

the actual active device support set only. On the contrary, the proposed attention-based

BiLSTM network follows a practical approach where the active device sparsity level is

first estimated. Then, the actual active device support set is identified based on the

estimated sparsity level.

We can see from the figure that the trends between the various benchmark schemes

are the same as in Fig. 5. The proposed attention-based BiLSTM network outperforms

the benchmark schemes by correctly identifying the actual active device support set

with higher accuracy. The ML-based LSTM-CS method cannot correctly identify all the

active devices because it relies on forward direction architecture only. On the contrary,

due to its forward and reverse direction architecture, the proposed BiLSTM network can

identify more active devices correctly. It can be seen that with the increasing number of

active devices, the accuracy of correctly identifying the actual active device support set

decreases, which is to be expected when grant-free NOMA systems operate in overloaded

6Note that in order to further enhance the network detection performance, data augmentation tech-
niques can be introduced to control the variations and to improve the model robustness, enabling it to
capture complex relationships better. This is outside the scope of this work.
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Figure 2.6: Average BER versus the SNR (dB), with the total number of potential devices
K = 200, the number of subcarriers N = 100, and the number of active devices S = 20.

conditions.

2.5.4 Multi-User Data Detection

Fig. 2.6 plots the average BER of the considered algorithms against the SNR (dB), with

K = 200, N = 100, and S = 20. In all scenarios, our proposed attention-based BiLSTM

network outperforms the benchmark schemes over the whole considered range of SNR,

including the ML-based LTSM-CS method. For SNR > 4 dB, the gap between the

proposed attention-based BiLSTM network and the Oracle LS algorithm is about 3 dB

only. This performance gap with the Oracle LS algorithm is because it fully assumes the

active device sparsity level and active device support set. The inaccurate active device

estimation causes the performance gap as a side effect of the grant-free NOMA system.

Fig. 2.7 plots the average BER against the active device sparsity S, with K = 200,

N = 100, and SNR = 6 dB. Unlike the computational complexity of the proposed network

in Section IV-C, the BER performance is impacted by the number of active users. For all

methods, the BER decays as the active devices increase. Even so, the proposed attention-

based BiLSTM network exhibits consistently lower BER than the benchmark schemes

throughout the whole considered range of SNR. The ML-based LSTM-CS method per-

forms better than traditional methods initially but saturates with a high number of active

devices since it cannot capture their temporal activation pattern due to its unidirectional

architecture. The consistent performance gains of the proposed attention-based BiLSTM
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Figure 2.7: Average BER versus the number of active devices S, with total number of
potential devices K = 200, the number of subcarriers N = 100, and SNR = 6 dB.

network show that the network has precisely mapped the underlying relationship between

device activity and received signals, given that the network is trained for S = 20 active

devices.

Fig. 2.8 plots the average BER against the SNR (dB) for varying OFs, with N =

100 and S = 20. It is evident that the average BER for all benchmark techniques

increases with a higher OF as the potential devices K are increased, making the system

prone to correlation errors. Even so, the average BER of the proposed attention-based

BiLSTM network compared to conventional techniques is lower, manifesting that the

proposed attention-based BiLSTM network can load more devices with the same training

configuration. This is because the proposed attention-based BiLSTM network has higher

tolerance and robustness against increased OFs due to decoupled correlated activation

patterns.

Fig. 2.9 plots the average BER against the temporal correlation parameter, η, with

K = 200, N = 100, S = 20 and SNR = 6 dB. Note that the result for η = 1 corresponds

to the special case of frame-wise joint sparsity, i.e., devices’ activity remains constant

over an entire data frame. We can see that the proposed network performs well for

all values of η. Herein, the LS-OMP algorithm performs poorly because it does not

utilise the extra information present in the previous time slots for temporal activity.

Conversely, the BER of the dynamic CS-based method is also relatively higher due to

its dependence on devices’ activity in the (j − 1) time slot only. The ML-based LSTM-

CS method performs better than the dynamic CS-based method because it takes the
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Figure 2.8: Average BER versus SNR (dB) for varying OF, with number of subcarriers
N = 100, and number of active devices S = 20.

temporal activity of devices in all time slots. However, because the ML-based LSTM-CS

utilises a forward direction LSTM only, it does not completely capture the activation

pattern of active devices. On the contrary, it can be seen that the increasing temporal

correlation parameter η enhances the BER performance of the proposed attention-based

BiLSTM network. This is because the proposed attention-based BiLSTM network has

bidirectional LSTM units, which successfully capture the underlying mapping of the

stacked received signal ỹ with the temporal correlation of device activity between different

time-slots using the estimated support of x. This further testifies to the generability of the

proposed attention-based BiLSTM network in different transmission patterns, showing

that the proposed attention-based BiLSTM network is not limited to the burst sparsity

model and is designed to perform robustly across a range of transmission scenarios. The

Oracle LS algorithm outperforms the proposed algorithm and remains consistent since it

assumes a complete active device support set.

2.5.5 Discussion on Robustness, Scalability and Generalisation

The results in Figs. 2.5-2.9 show that the proposed attention-based BiLSTM network,

which is trained on S = 20, N = 100, K = 200 and η = 0.5, is robust to changes in the

key system parameters. We can see that the trained BiLSTM network still performs well

when there is a change in the number of active devices (Figs. 2.5 and 2.7), the number of

potential devices or, equivalently, the overloading factor (Fig. 2.8) or temporal correlation
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Figure 2.9: Average BER versus the temporal correlation parameter η, with total number
of devices K = 200, number of subcarriers N = 100, number of active devices S = 20,
and SNR = 6 dB.

model (Fig. 2.9), and does not need to be retrained for the considered practical range

of considered values (10 ≤ S ≤ 40, 0.5 ≤ η ≤ 1 and 150 ≤ K ≤ 300). This is because

training the network at η = 0.5 allows it to learn the important features of the device

activation patterns, and it still performs well when the parameters change. This shows

that the proposed network is generalisable to different system parameters. However, in

the event of significant environmental changes (complete channel mismatch), the model

would need to be retrained to accommodate entirely new channel characteristics.

In addition, the proposed network is a good solution for grant-free NOMA systems to

provide faster access for massive IoT devices. As demonstrated in Table 2.2, the proposed

network’s computational complexity is comparable to the state-of-the-art ML-based so-

lution and does not heavily depend on the system parameters. Thus, when the number of

active devices increases or the number of potential devices in the system becomes large,

the computational complexity increases only marginally. Thus, the proposed scheme is

scalable and is suitable for faster access in massive IoT device scenarios.

2.6 Summary

In this work, we proposed an attention-based BiLSTM network for AUD in an uplink

grant-free NOMA system by exploiting the temporal correlation of active user support

sets. First, a BiLSTM network is used to create a pattern of the device activation history
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in its hidden layers, whereas the attention mechanism provides essential context to the

device activation history pattern. Then, the complex spreading sequences are utilised for

blind data detection without explicit channel estimation from the estimated active user

support set. Thus, the proposed mechanism is efficient and does not depend on imprac-

tical assumptions, such as prior knowledge of active user sparsity or channel conditions.

Through simulations, we demonstrated that the proposed mechanism outperforms several

existing benchmark MUD algorithms and maintains lower computational complexity. In

this work, we have applied the proposed framework to spreading based grant-free NOMA

scheme.



Chapter 3

IoT Device Authentication in

Terrestrial Networks

3.1 Introduction

The transition from detection and identification (Chapter 2) to authentication (Chapter

3) reflects a natural progression in the IoT security framework. While detection and

authentication differ in purpose, there are shared foundations. Both rely on leveraging

inherent properties of IoT device transmissions—such as sparsity and access patterns—to

achieve lightweight and efficient solutions tailored for resource-constrained IoT environ-

ments. By building on these principles, this chapter introduces a novel authentication

scheme optimized for terrestrial networks, addressing challenges like computational over-

head, misdetection rates, and robustness. In this second technical chapter, we propose

a novel lightweight and continuous authentication scheme for resource-constrained IoT

devices by identifying the pre-arranged access time slots and spreading pools of each IoT

device, which provides high uncertainties for the spoofers and supplies seamless protec-

tions for legitimate communications. In our proposed scheme, the access time slots are

pre-agreed between a pair of IoT devices and the AP, which are difficult for the adver-

saries to predict and do not require additional hardware for implementation [87]. The

access time slots are generated using the spreading pools available at the AP and IoT

devices. The access time slots for every IoT device are generated independently at the

AP and the IoT devices, thereby obeying the grant-free NOMA protocol for a practical

massive IoT deployment. If the access time slot and spreading pool of an IoT device are

different from the access time slot and spreading pool at the AP, it will be identified as an

illegitimate device by the AP. To our best knowledge, this is the first work to authenticate

47
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Figure 3.1: Illustration of our system model. The transmission between the IoT devices
and the AP is carried out by following the pre-agreed access time slots.

multiple resource-constrained IoT devices utilising grant-free NOMA protocol by utilising

their spreading pools and pre-arranged access time slots as the source for authentication.

The rest of this chapter is organised as follows. In Section 3.2, we review the related

studies of authentication schemes for IoTs. In Section 3.3, we present the system model

and the authentication problem. In Section 3.4, we describe the proposed authentication

scheme and provide a detailed description of the different phases of device authentication.

Finally, in Section 3.5, we derive the performance analysis of the proposed authentication

scheme. In Section 3.6, we present the simulation results to verify the performance gain

of the proposed technique.

3.2 System Model

In this work, we consider the scenario where IoT devices wake up sporadically and trans-

mit their data to the AP in a grant-free manner, as depicted in Fig. 3.1. Thus, we

consider a spreading-based uplink grant-free NOMA system comprising of an AP and K

IoT devices with limited computing capabilities. The AP has relatively powerful com-

puting capabilities and is at a fixed location. The AP and IoT devices are assumed to

be equipped with a single antenna, and their clocks are synchronised1. We assume that

upper-layer security mechanisms are utilised initially to establish system parameters be-

1Practically, clock synchronisation can be achieved via methods described in [114–116] to achieve
energy-efficient communications for IoT devices. However, this is outside the scope of this work.
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Table 3.1: Important symbols used in this work.

Variable Description Dimension

K Total number of IoT devices 1× 1

N Total subcarriers 1× 1

S Active number of IoT devices 1× 1

J Number of time slots 1× 1

c Spreading sequence N × 1

h Channel N × 1

x Transmit signal K × 1

w Gaussian noise N × 1

y Received signal N × 1

G
Synthesis of channel vector and
spreading sequences

N ×K

H Channel matrix N ×K
C Codebook matrix N ×K
X Transmit signal (continuous time slots) K × J

G
Synthesis of channel vector and
spreading sequences (continuous time slots)

N ×K

W Gaussian noise (continuous time slots) N × J
Y Received signal (continuous time slots) N × J
Γ Authenticated devices’ indicator K × J
X̃ Authenticated devices’ data K × J

tween the AP and IoT devices [85]. During transmission, a subset of the K IoT devices

sporadically and randomly become active when they have data to transmit. We consider

an overloaded system where the number of resource blocks N is less than the number of

IoT devices in a cell, i.e., N < K.

3.2.1 Threat Model

In the system model, as depicted in Fig. 3.1, we assume that illegitimate devices can be

present anywhere in a cell, including in close proximity to legitimate IoT devices, and

therefore, their physical channels can be correlated. As a result, the AP can receive

transmissions from both legitimate IoT and illegitimate devices, where the illegitimate

devices attempt to access the network by conducting spoofing attacks, such as man-in-

the-middle attacks and replay attacks. With this in mind, apart from the codebook

matrix2, we assume that the illegitimate devices utilise the same system parameters and

2Generally, the AP can refresh the codebook matrix in a cell to enhance communication using different
methods [117,118]. However, this is a separate research topic and is, therefore, outside the scope of this
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upper-layer signalling as the legitimate IoT devices, as detailed in Table 3.1. We further

assume that the illegitimate devices can remain active at all times and can scan the

network to learn the transmission pattern of legitimate IoT devices. Thus, illegitimate

devices can be resourceful and more computationally capable than legitimate IoT devices.

3.2.2 Signal Model

Considering an arbitrary symbol interval, an IoT device randomly wakes up and transmits

its complex modulated signal towards the AP, which are independent random variables

drawn from a standard symmetric discrete constellation set. After modulation, the trans-

mitted symbol xk from the k-th IoT device is spread onto a spreading sequence ck of

length N . The received signal y on the n-th subcarrier at the AP is given as

yn =
K∑
k=1

hnkcnkxk + wn, (3.1)

where hnk refer to the n-th subcarrier of the k-th IoT device’s channel vector hk =

[h1k, h2k, . . . , hNk]
T ∈ CN×1, cnk refer to the n-th component of the spreading sequence

ck = [c1k, c2k, . . . , cNk]
T ∈ CN×1, and wn is the Gaussian noise on the n-th subcarrier

with zero mean and variance σ2. By combining the received signals overall N subcarriers,

the received signal vector y = [y1, y2, . . . , yN ]T ∈ CN×1 is given as

y = Gx+w, (3.2)

where x = [x1, x2, . . . , xK ]T ∈ CK×1 is the transmitted signal vector for all K devices

and w = [w1, w2, . . . , wN ]T ∈ CN×1 is the noise vector. G ∈ CN×K is the synthesis of

the channel vectors and spreading sequences, given as

G = H⊙C, (3.3)

where H = [h1,h2, . . . ,hK ] ∈ CN×K is the channel matrix, C = [c1, c2, . . . , cK ] ∈ CN×K

is the codebook matrix, and ⊙ is the Hadamard product, i.e., gnk = hnkcnk.

3.2.3 Transmission Model

Different works [66,69,119] have assumed that the active IoT devices remain unchanged

in an entire frame. However, in practical grant-free systems, the IoT devices access or

work.
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leave the system randomly [45]. Moreover, once active, due to the size of their data

payload, some IoT devices transmit their data in consecutive time slots. From this, it

concurs that the nature of data transmission by IoT devices is generically random and

not deterministic. Therefore, we consider a scenario where the IoT devices become active

or inactive in different time slots, which is a more practical scenario in IoT applications

with sporadic communications. Motivated by this, we can extend the signal model in

(3.2) from a single time slot transmission model to a continuous time-slots transmission

model.

The transmitted signals X =
[
x[1],x[2], . . . ,x[J ]

]
∈ CK×J are recovered from the

received signals Y =
[
y[1],y[2], . . . ,y[J ]

]
∈ CN×J in J continuous time slots, based on

the LTE-Advanced standard protocol [110]. Thus, the continuous time-slots transmission

model for the j-th time slot is given as

y[j] = G[j]x[j] +w[j], j = 1, 2, . . . , J, (3.4)

where G[j] ∈ CN×K is the synthesis of the channel vectors and spreading sequences in

the j-th time slot and w[j] is the equivalent Gaussian noise vector in the j-th time slot.

3.2.4 Problem Statement

The sporadic nature of the IoT devices allows the illegitimate devices to impersonate the

legitimate IoT devices to spoof the AP and gain access to the core network. Assuming

that an IoT device transmits to the AP in the j-th time slot, the objective at the AP is to

authenticate the device if the message originated from a legitimate IoT device. In order

to achieve this, the AP and the legitimate IoT devices can agree on specific transceiver

features or characteristics, which can be used to distinguish legitimate IoT devices from

illegitimate devices. Let Γ[j] represent the authenticated devices indicator in the j-th

time slot; then, the authentication problem is given as

Γ[j] =

 1 if H0

0 if H1

, (3.5)

where H0 and H1 represents the received signal y[j] in the j-th time slot, originated

from a legitimate IoT device and an illegitimate device, respectively, and act as the

hypothesis for IoT device authentication. The conventional schemes [83, 120, 121] rely

on quantisation-based thresholds in (3.5) for decision making. However, the authenti-

cation performance significantly declines due to the quantisation errors introduced by
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the algorithms. Additionally, it is challenging to obtain optimal values for the detection

thresholds to maintain continuous authentication when a large number of IoT devices

are involved since exhaustive search methods are utilised to obtain these values.

Another downside to these conventional schemes is that they rely on the physical

channel for seed acquisition, verification, reconciliation, and IoT device authentication

[80,81,122]. However, reliance on the physical channel for device authentication does not

explicitly apply to resource-constrained IoT devices. The reasons for this are as follows.

• A transceiver pair cannot probe the physical channel simultaneously for seed ac-

quisition due to the half-duplex nature of the radio. The resource-constrained IoT

devices are assumed to probe the physical channel for seed acquisition and authen-

tication in the conventional physical-channel-based schemes. This is impractical

since the resource-constrained IoT devices cannot probe the physical channel due

to their limited battery; therefore, the conventional schemes result in excessive

battery loss and time lag due to the radio distance turnaround time.

• The reconciliation overhead due to imperfect physical-channel reciprocity increases

with the increased key length for seed generation. This means that to achieve a

higher authentication rate (by increasing key length), the parity bit information

to correct errors is also increased. This is against the spirit of authentication

mechanisms for resource-constrained IoT devices, where channel training/probing

of IoT devices should be minimised due to their limited resources.

• A transceiver pair separated by a greater than half wavelength distance does not

guarantee independent physical channels for seed acquisition [123]. This means that

there is no clear safeguard distance to ensure the secrecy of the generated key, as

typically assumed in the physical-channel-based seed acquisition techniques [124].

From this discussion, we can conclude that (i) conventional physical-channel-based au-

thentication techniques exhibit these intrinsic limitations, which limits their effective-

ness in situations where a transceiver pair experiences spoofing attacks, and (ii) the

conventional physical-channel-based seed acquisition techniques are not practical for

resource-constrained IoT devices. Therefore, access to a coherent source for identical

and lightweight seed generation is crucial for continuous authentication between the AP

and resource-constrained IoT devices.
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Figure 3.2: Proposed authentication scheme comprises four processes: access time slots
generation, spreading pool construction, seed generation, and authentication decision.

3.3 Proposed Authentication Scheme

With the sporadic nature of transmission of IoT devices in mind, the objective at the

AP is to authenticate the legitimate IoT devices from the received signal y[j] in the j-th

time slot. Therefore, to achieve authentication, the generated seeds must adhere to the

policies as follows [87]: 1) a transceiver pair must generate an identical seed stemming

from an identical feature for authentication at the AP; 2) seeds should be undisclosed

to any other devices, making the generated feature unpredictable by illegitimate devices;

and 3) seeds should be proactively refreshed to maintain continuous authentication while

preserving uncertainty for illegitimate devices. To meet these requirements, we use the

transmission nature of the grant-free NOMA in (3.4) as the seed source instead of relying

on physical-channel attributes for seed acquisition. Then, we use the seed to generate

the access time slots for IoT device authentication.

The proposed authentication scheme consists of four processes: (A) access time slots

generation, (B) spreading pool construction, (C) seed generation, and (D) authentication

decision, and is summarised in Fig. 3.2. The four processes form a cohesive, secure,

continuous authentication system between an AP and IoT devices. The AP shares initial
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access time slots and a codebook matrix with the IoT devices in the initialisation stage

using symmetric encryption, which is per standard by 3GPP and is not unique to the

proposed authentication framework. The AP and IoT devices then independently refresh

the access time slots and generate spreading pools from the codebook matrix. These

spreading pools generate the seed for the next round of access time slots. When the

current access time slots are exhausted, the seed is refreshed independently at the AP

and IoT devices. Finally, the AP uses the access time slots and spreading sequences

to make authentication decisions without needing optimal threshold value updates. By

combining these processes, the system ensures that the AP and IoT devices can securely

communicate, authenticate each other, and maintain continuous authentication over time.

This interaction of the proposed authentication scheme with the grant-free NOMA system

is illustrated in Fig. 3.3. The four processes are further explained in detail below.

3.3.1 Access Time Slots Generation

The access time slots for IoT device transmission are divided into recurring time slots of

fixed length [87], as depicted in Fig. 3.1. The IoT devices transmit their signals to the

AP in time slots pre-agreed upon between the IoT devices and the AP. Therefore, the

AP can quickly identify an illegitimate device based on its time slot access. If the seeds

are hidden from illegitimate devices, the access time slots are highly unpredictable. More

importantly, a seed can generate several access time slots, allowing each IoT device at the

AP to be identified continuously for an extended period. Unlike conventional key-based

physical-channel schemes, authentication via access time slots does not entail complex

computation or high latencies because, in key-based schemes, access to a coherent key is

required for every message transmission. In contrast, the access time slots do not require

a shared key for every transmission since the transmission schedules are followed by the

IoT device and verified by the AP. Thereby, continuous and lightweight authentication

between a transceiver is achieved.

The access time slots are generated using linear feedback shift registers, which entails

a statistical behaviour close to truly random sequences and does not entail expensive

exponential or modulo operations [125]. Therefore, the access time slots are lightweight

and challenging to predict by adversaries who do not know the pseudo-random transmis-

sion schedules. The access time slots are generated using a monic polynomial of degree

µ, which is a prime number with 2µ − 1 the maximum length of the generated access
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Figure 3.3: Flowchart of proposed authentication scheme and its interaction with grant-
free NOMA system model considered in this work.
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time slots [126]. The generating monic polynomial for a generic variable κ is given as

f(κ) = C0 + C1κ + C2κ2 + . . .+ Cµκµ =

i=µ∑
i=1

Ciκi,

(C0 = Cµ = 1),

(3.6)

where C0, C1, . . . , Cµ are the constant coefficients of the polynomial. It should be noted

that it is difficult for illegitimate devices to predict the monic polynomial function used

for the access time slot generation since the AP and IoT devices can refresh the monic

polynomial, further enhancing the authentication performance. Furthermore, the process

of access time slots generation using the monic polynomial in (3.6) is repeated indepen-

dently at the AP and k-th IoT device to renew the transmission schedule for continuous

authentication, provided they have access to an identical seed. Therefore, a transceiver

pair does not have to carry out complex hash function operations for seed concealment

and sharing, testifying to the low complexity and lightweight nature of the proposed

authentication scheme.

3.3.2 Spreading Pool Construction

In this work, we consider that the transmission symbols of the IoT devices are spread

with a family of short complex-valued spreading sequences with low cross-correlation

values [1, 49], as shown in (3.2). This allows for loading more IoT devices in a resource

block and reducing implementation complexity. Let C(4,6) represent a complex-valued

codebook matrix to support K = 6 devices using N = 4 resource blocks in an overloaded3

scenario, given as

C(4,6) =


w0 w4 w3 w1 w6 w5

0 w2 w6 w4 w5 w0

w4 w7 w0 w3 w0 0

w3 w0 w2 w4 w3 w6

 , (3.7)

where wn is the non-zero elements of the codeword. The non-binary and complex-valued

spreading sequences in (3.7) allow for a higher degree of freedom for loading a larger num-

ber of IoT devices, thus providing much more flexibility in spreading sequences design,

3The OF is defined as the ratio of the number of potential IoT devices to the number of available
resource blocks in the system, i.e., OF (%) = K

N
× 100.
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which is reflected by a high OF and demonstrates a true sense of grant-free transmission4.

Conventionally in grant-free systems, the codebook matrix in (3.3) is stored locally

with the AP and shared with all IoT devices independently in the initialisation stage,

which is later utilised by the IoT devices for data transmission [45, 130]. With this

sense of practicality in mind, we propose constructing a lightweight mechanism to utilise

the codebook matrix in (3.3) for enhanced authentication. This involves constructing

spreading pools from the codebook matrix in (3.3) for every IoT device in a cell. Let γk

denote the spreading pool constructed using the codebook matrix C(4,6) in (3.7) for the

k-th IoT device. As such, for the overloaded scenario in (3.7), the respective spreading

pools for K = 6 IoT devices can be constructed as

γ1 = {w0, 0, w4, w3},

γ2 = {w4, w2, w7, w0},

γ3 = {w3, w6, w0, w2},

γ4 = {w1, w4, w3, w4},

γ5 = {w6, w5, w0, w3},

γ6 = {w5, w0, 0, w6}.

(3.8)

Once the spreading pools are constructed, the access time slots are superimposed over

the spreading pools for intelligent transmission and enhanced authentication. Thus, the

spreading pools in (3.8) can therefore be rewritten as

γ1 = {
1︷︸︸︷
w0 ,

1︷︸︸︷
0 ,

0︷︸︸︷
w4 ,

0︷︸︸︷
w3 },

γ2 = {
1︷︸︸︷
w4 ,

1︷︸︸︷
w2 ,

0︷︸︸︷
w7 ,

1︷︸︸︷
w0 },

γ3 = {
1︷︸︸︷
w3 ,

0︷︸︸︷
w6 ,

0︷︸︸︷
w0 ,

0︷︸︸︷
w2 },

γ4 = {
1︷︸︸︷
w1 ,

1︷︸︸︷
w4 ,

1︷︸︸︷
w3 ,

0︷︸︸︷
w4 },

γ5 = {
1︷︸︸︷
w6 ,

0︷︸︸︷
w5 ,

0︷︸︸︷
w0 ,

0︷︸︸︷
w3 },

γ6 = {
1︷︸︸︷
w5 ,

1︷︸︸︷
w0 ,

1︷︸︸︷
0 ,

0︷︸︸︷
w6 }.

(3.9)

From (3.9), it can be seen that by jointly utilising the spreading pools and access

4The design of the codebook matrix can be carried out in different ways [45,127–129] to enhance the
OF of the system further. However, this is outside the scope of this work.
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time slots, an enhanced security mechanism can be developed, which provides a higher

degree of system efficiency (reduction in spreading sequence collision due to intelligent

transmission) and security entropy (a two-step mechanism for device authentication).

The utilised spreading pools by the respective IoT devices are then used for seed and

refreshed access time slot generation. Herein, it should be noted that a longer length of

spreading pool and access time slots results in a higher authentication entropy. However,

a shorter length results in lower bit-error-rate (BER) performance. This demonstrates

a trade-off between authentication and BER performance which can be controlled based

on the network requirements.

3.3.3 Seed Generation

Once the spreading pools and their tagged access time slots are exhausted, the AP and

IoT devices need to recreate newer spreading pools and access time slots for continuous

authentication. In this regard, the k-th IoT device can use its current spreading pool to

generate a seed value for the newer pools. Let (c1k, c2k, . . . , cNk) represent the length of

the spreading sequences inside a spreading pool γk, and (l1k, l2k, . . . , lLk) represent the

access time slots of the k-th IoT device. Then, we generate the seed by taking the XOR

of the access time slots and calculating the ℓ2 norm of the tagged spreading sequences.

This process for an arbitrary spreading pool γk of the k-th IoT device is as follows:

Step 1: Take the original spreading pool and its superimposed access time slots

γk = {
1︷︸︸︷
w0 ,

1︷︸︸︷
0 ,

0︷︸︸︷
w4 ,

0︷︸︸︷
w3 } (3.10)

Step 2: Take XOR of the access time slots

γk = {
0︷︸︸︷
w0 ,

0︷︸︸︷
0 ,

1︷︸︸︷
w4 ,

1︷︸︸︷
w3 } (3.11)

Step 3: Nullify the spreading sequences under 0’s

γk = {
0︷︸︸︷
0 ,

0︷︸︸︷
0 ,

1︷︸︸︷
w4 ,

1︷︸︸︷
w3 } (3.12)

Step 4: Take the sum and ℓ2 norm of the spreading sequences under 1’s to obtain pre-

liminary seed

Θ = ||w4 + w3||2 (3.13)
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Step 5: Take the square of the preliminary seed to obtain the final seed

seed = Θ2. (3.14)

This process is performed independently at the AP and the IoT devices. It should be

noted that steps 4 and 5 depend on the resource availability of the IoT devices. That is to

say; if the IoT devices are extremely resource-constrained, the preliminary Θ can be used

for access time slots generation since it averts computationally expensive O(L2) opera-

tion in step 5, as well as results in a shorter key length. However, step 5 provides a longer

key length for increased authentication, thereby providing prolonged authentication. The

choice of seed in steps 4 and 5 demonstrates a trade-off between the computational per-

formance and security performance of a transceiver pair. Hence, this process should be

well-designed to achieve a better trade-off. Furthermore, it should be noted that, unlike

the conventional physical-channel-based schemes, the proposed authentication scheme

does not rely on channel probing for seed acquisition, seed reconciliation, or authentica-

tion. This means that the seed verification phase, which is required in the conventional

physical-channel-based authentication schemes due to either imperfect channel probing

or quantisation errors, is not needed in the proposed authentication scheme, thus paving

the way for a practical, lightweight, and independent authentication mechanism in a

grant-free NOMA system.

3.3.4 Authentication Decision

The conventional physical-channel-based authentication schemes rely on quantisation-

aided hypothesis testing as a decision criterion in (3.5). However, such benchmarks rely

on static statistical properties of the physical channel and cannot account for varying

attributes of fast-fading physical-channel characteristics, resulting in misdetection. As

opposed to this, the proposed authentication scheme does not rely on a quantisation-based

threshold as an authentication criterion. Instead, the proposed scheme utilises a two-step

authentication decision process, where the AP first matches the access time slots of the

transceiver pair and then compares the spreading sequences of the following transmitting

schedule. The two-step authentication process enables mitigating misdetection at the

AP and averts false alarms. This authentication process is summarised in Algorithm 1,

and the main procedure is presented as follows.

1. Line 2: The sparse transmitted signal vector in the j-th time slot is estimated and
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detected at the AP by the least squares algorithm as [62]:

x̂[j] =
(
G[j]

)†
y[j]. (3.15)

2. Line 3: The codebook matrix C[j] utilised by the IoT devices in the j-th time slot

is extracted by applying Hadamard division on the channel matrix as:

C[j] = G[j] ⊘H[j]. (3.16)

3. Line 6: The spreading pools and the transmission schedule of the K IoT devices is

extracted from the codebook matrix in the j-th time slot as:

γ
[j](l)
k [device] = C[j](:, k). (3.17)

4. Line 7-12: The l-th access time slot of the k-th IoT device γ
[j](l)
k [device] in the j-th

time slot is compared with the l-th access time slot of the AP γ
[j](l)
k [AP] in the

j-th time slot. If the access time slot matches, the authenticated devices indicator

function Γ
[j]
k for the k-th device in the j-th time slot is set to 1. Otherwise, the

indicator function records a 0, deeming the k-th device as illegitimate.

5. Line 13-17: The l-th spreading sequence of the k-th IoT device γ[j](k, l)[device]

from the extracted spreading pool in the j-th time slot is compared with the l-th

spreading sequence of the AP γ[j](k, l)[AP] in the j-th time slot. If the spreading

sequence matches, the authenticated devices indicator function Γ
[j]
k for the k-th

device in the j-th time slot is set to 1. Otherwise, the indicator function records a

0, deeming the k-th device as illegitimate.

6. Line 20: The authenticated devices data x̃[j] in the j-th time slot is determined

by calculating the Hadamard product between the estimated sparse transmitted

signal vector x̂[j] and the authenticated devices indicator function Γ[j] in the j-th

time slot, given as:

x̃[j] = x̂[j] ⊙ Γ[j]. (3.18)

At the end of the iteration, the authenticated devices data x̃[j] in the j-th time slot is

transformed into a sparse vector, where the data of the illegitimate devices is replaced

with 0’s, whereas the authenticated devices data is recovered.
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Algorithm 2 The Proposed Authentication Scheme.

Input:
Received signals: Y =

[
y[1],y[2], . . . ,y[J ]

]
;

Equivalent channel matrices: G =
[
G[1],G[2], . . . ,G[J ]

]
.

Output:
Authenticated devices indicator: Γ =

[
Γ[1],Γ[2], . . . ,Γ[J ]

]
;

Authenticated devices symbols: X̃ =
[
x̃[1], x̃[2], . . . , x̃[J ]

]
.

Device detection
1: for j = 1 to J do

2: x̂[j] =
(
G[j]

)†
y[j]

3: C[j] = G[j] ⊘H[j]

Device authentication
4: for l = 1 to L do
5: for k = 1 to K do
6: γ

[j](l)
k [device] = C[j](:, k).

Step 1: (Access time slot check)

7: if γ
[j](l)
k [AP] == γ

[j](l)
k [device] then

8: Γ
[j](l)
k = 1.

9: else
10: Γ

[j](l)
k = 0.

11: Skip to line 17.

Step 2: (Spreading sequence check)
12: if γ[j](k, l)[AP] == γ[j](k, l)[device] then

13: Γ
[j](l)
k = 1.

14: else
15: Γ

[j](l)
k = 0.

16: x̃[j] = x̂[j] ⊙ Γ[j].

Return:
Γ =

[
Γ[1],Γ[2], . . . ,Γ[J ]

]
;

X̃ =
[
x̃[1], x̃[2], . . . , x̃[J ]

]
.
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3.4 Security Performance Analysis

The performance of any new authentication scheme can be assessed using security analy-

sis. A comprehensive formal security analysis often necessitates sophisticated modelling,

which entails using advanced mathematical frameworks and cryptographic primitives

to replicate potential threat scenarios and evaluate system vulnerabilities. In such mod-

elling, formal methods and symbolic representations are employed to capture and analyse

the intricate dynamics of potential attacks and the protective countermeasures of the sys-

tem. This intricate modelling process aims to uncover hidden vulnerabilities, test the

system’s resilience against various threats, and derive insights for strengthening the sys-

tem’s defence mechanisms [131]. However, a formal security analysis is outside the scope

of this work. Instead, similar to [87], the effectiveness of our proposed authentication

scheme can be assessed rigorously using performance metrics such as entropy, key space,

and computational efficiency. Here is why these metrics are employed:

• Entropy: This metric indicates a system’s resilience against unauthorised access.

Specifically, greater entropy suggests that an illegitimate device would be compu-

tationally arduous to predict or deduce the system’s state.

• Key Space: This metric represents the total set of potential keys that could be em-

ployed within the system, offering a quantifiable measure of its complexity against

brute-force attacks.

• Lightweight: This metric aims to minimise computational demands and resource

consumption while maintaining stringent security standards.

By focusing on these metrics, we can demonstrate the robustness and security perfor-

mance of the proposed authentication scheme.

3.4.1 Entropy

Legitimate IoT devices go through periodic updates of the access time slots and spreading

pools; therefore, it is challenging for illegitimate devices to spoof the AP. Furthermore,

since a transceiver pair independently but identically utilises multiple spreading sequences

from the spreading pool for seed generation, they are difficult for illegitimate devices to

predict. Following this, it is clear that the seed is concealed from an adversary if it does

not know the access time slots and the corresponding spreading pools. Furthermore,

updating the access time slots and spreading pools will provide further protection for
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legitimate IoT devices by renewing their access sequences over time. Hence, the pro-

posed authentication scheme provides enhanced protection against spoofing attacks and

pertains to legitimate communications between IoT devices and the AP.

With this understanding, entropy is defined as a metric that measures the uncertainty

associated with the randomness of a system [132] and is used to evaluate the security

strength of the authentication scheme. Thus, entropy is defined as

Etotal =
R∑

r=1

Er, (3.19)

where

Er = −pr0 log pr0 − (1− pr0) log(1− pr0). (3.20)

R represents the total length of the shared key, and pr0 denotes the posterior probability

of the r-th bit when it is 0 from the illegitimate devices’ knowledge.

Claim 3.1 The entropy of the proposed authentication scheme is higher than that of the

physical-channel key generation schemes of [132–135].

Proof: We provide proof using heuristic arguments as follows. Assuming R denotes

the length of the access time slots and the key in the physical-channel key generation

schemes, we denote pIr0 and pIIr0 as their posterior probabilities of the r-th bit when it

is 0 from the illegitimate devices’ knowledge, respectively. It should be noted that the

proposed authentication scheme relies on multiple attributes, i.e., it utilises N spreading

sequences for seed generation. On the contrary, the physical-channel key generation

schemes rely on a single attribute for shared key generation. Since multiple attributes

are being utilised in the proposed authentication scheme and legitimate IoT devices follow

the pre-agreed access time slots for transmission, it is difficult for illegitimate devices to

spoof the AP. Then, ∣∣∣∣pIr0 − 1

2

∣∣∣∣ < ∣∣∣∣pIIr0 − 1

2

∣∣∣∣ (3.21)

holds [87], which means the illegitimate devices have less knowledge that the r-th bit

is 0 in the proposed authentication scheme. Let EI
r denote the entropy of the proposed

authentication scheme, and EII
r denote the entropy of the physical-channel key generation

schemes. Then, from (3.21), we can concur that

EI
r > EII

r (3.22)

holds. This completes the proof.
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3.4.2 Key Space

Due to their limited computational resources, the resource-constrained IoT devices cannot

compute shared keys for every data transmission, required by conventional encryption

methods. To overcome this inherent issue, resource-constrained IoT devices rely on

shortened keys to reduce the computational overhead. However, shortened keys can be

more vulnerable to malicious attacks as they can be easily cracked by attackers using

brute force. This is because sophisticated attackers with rapidly growing processing

power can compromise the short-length keys within a much shorter time than before, for

example, by using exhaustive search approaches [124]. Therefore, an additional layer of

security based on low computational cost is required. Based on multi-factor attributes,

the proposed authentication method complements the overall security paradigm by acting

as another source of randomness to provide additional entropy to the system. This

authentication at the lower layer compensates for entropy loss due to the use of shortened

keys in the higher layers in resource-constrained IoT devices.

Claim 3.2 The key space of the proposed authentication scheme is higher than that of

the physical-channel key generation schemes of [132–135].

Proof: We provide proof using heuristic arguments as follows. Assuming that R

represents the length of the key in the proposed authentication scheme and physical-

channel key generation schemes, we denote κIR and κIIR as the upper bound of the key

search space, respectively. We know that the proposed authentication scheme utilises the

access time slots and the complex spreading sequences for IoT device authentication. On

the other hand, the physical-channel key generation schemes rely on the attribute of the

physical channel for key generation. Thus, in Table 3.2, we demonstrate the key search

space versus the key length of the proposed authentication scheme and physical-channel

key generation schemes. It is evident that the proposed authentication scheme achieves

a higher search space than the physical-channel key generation schemes for the same

key length. This is because the proposed technique utilises complex spreading sequences

and access time slots, which adds another source of randomness to the system for key

generation. Therefore, the proposed authentication scheme is less susceptible to brute

force attacks than the physical-channel key generation schemes for the same key length.

Thus, from Table 3.2, it is concurred that

κIR > κIIR (3.23)

holds. This completes the proof.
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Table 3.2: Key length versus search space complexity of physical-channel-based and
proposed techniques.

Key length
Physical-channel key generation schemes Proposed authentication scheme

Search space Authentication complexity Search space Authentication complexity

9 512

O(N )

8192

O(1)
11 2048 32768

13 8192 131072

15 32768 524288

17 131072 2097152

Since the proposed authentication scheme introduces more randomness into the net-

work, the total system entropy Etotal is higher than physical-channel key generation

schemes. Hence, the proposed authentication scheme can be integrated into the network

to provide additional entropy for improving the system’s resistance to attacks.

3.4.3 Lightweight

The proposed authentication scheme utilises the transmission parameters and access time

slots for IoT device authentication. Conversely, the proposed authentication scheme does

not rely on physical-channel probing for IoT device authentication. As a result, the

seed verification phase is not required in our proposed authentication scheme. More

importantly, the proposed schemes provide continuous authentication by checking the

spreading sequences and access time slots of the IoT devices instead of generating and

verifying shared keys repeatedly. As a result, as shown in Table 3.2, compared to the

physical-channel-based key generation schemes, the proposed authentication schemes

achieve a lower authentication complexity for N times of authentication, which validates

the lightweight nature of the proposed authentication scheme.

3.5 Results and Discussion

In this section, we evaluate the performance of the proposed authentication scheme in

solving the device authentication problem. We plot the performance of three physical-

channel-based authentication benchmark solutions: using binary hypothesis testing (BHT)

[84], using ML-based SVM [136], and using deep neural network-based (NN) detec-

tion [137]. For these three benchmark solutions, the core architectures are borrowed

from the respective works but their input configurations have been adjusted to our sys-
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Table 3.3: Access time slots generation using seed.

State Observations

Spreading pool utilised
between a transceiver pair

γ = {−4− 4i,−0 + 8i, 1− 1i, . . . ,−2 + 2i, 4}

Seed extracted by the AP 1111010000000

Seed extracted by the IoT 1111010000000

Access time slots at the AP
and IoT

1000010000001110110100101010110011
1100011100001001001111011101001110
1111100011100101111001111110010011
110110011110010000001

tem model for a fair comparison. For these benchmark solutions, the estimates of the

received signal strength indicator (RSSI), the channel impulse response (CIR), and the

channel frequency response (CFR) are used as attributes from the physical channel for

authentication [122]. Specifically, due to the correlation of adjacent CIRs and CFRs on

the same path, the temporal process of the i-th subpath at the j-th time slot is given

as [122]

hi(j) = ζhi(j − 1) +
√

(1− ζ2)σ2i ui(j − 1), (3.24)

where ζ ∈ [0, 1] represents the physical-channel correlation of two successive subpaths

and ui is a driving noise which is modelled as a zero-mean complex Gaussian random

variable with unit variance [84]. The path loss between the AP and the k-th IoT device

is modelled as 128.1+37.6 log10(di), where di is the distance (in km) [110]. Additionally,

for the benchmark schemes, the physical channels of the illegitimate devices are assumed

to be independent of the legitimate IoT devices, meaning the illegitimate devices are

assumed to be at a distance greater than half wavelength from the legitimate IoT devices.

Assuming initial authentication between a transceiver pair in the j-th time slot, their

observation characteristics are shown in Table 3.3. As detailed in section III-C, the

AP and IoT device independently extract the seed by utilising the spreading pool used

for data transmission. Since the seed source is the spreading pool, extracted from the

codebook matrix and available with the transceiver pair locally, there is no requirement

for seed verification. Therefore, once the seed is acquired, the AP and IoT independently

generate the access time slots required for transmission. In this work, we utilise the

following monic polynomial for the access time slots generation

f(κ) = 1 + κ1 + κ3. (3.25)
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3.5.1 Experimental Setup

In the simulations, unless otherwise stated, K = 200 potential devices simultaneously

share N = 100 resources. Thus, the OF is 200%. For every time slot, there is S = 20

number of active devices randomly selected from the set {1, 2, . . . ,K}. S = 20 was chosen

as it represents a moderate and practical number of active devices commonly encountered

in resource-constrained IoT networks, balancing network sparsity and congestion. This

selection aligns with configurations in related literature, ensuring both relevance and a

realistic baseline for performance evaluation. The number of time slots is fixed at J = 7.

The transmitted signals are modulated by QPSK. The SNR range is set between 0 to 25

dB. The oracle least squares algorithm is utilised for device detection.

The simulations are carried out on the Gadi supercomputer of the National Compu-

tational Infrastructure (NCI), Australia, utilising 48 cores of Intel Xeon Platinum 8274

(Cascade Lake) processors and 192GB of random access memory. The simulations are

carried out on MATLAB 2021b. The results are averaged over 1000 Monte Carlo trials.

3.5.2 Performance Metrics

In order to appropriately evaluate the authentication performance, we use the follow-

ing metrics: the false alarm rate (ρfa), the misdetection rate (ρmd), and the spreading

sequence collision rate (ρsc) as performance metrics. Given the transmit signal x, au-

thenticated devices data x̃, the authenticated devices indicator Γ, and the spreading pool

γ for the k-th IoT device in the j-th time slot, the performance metrics are defined as

follows.

• False alarm rate: This metric evaluates the rate of legitimate IoT devices being

falsely detected as illegitimate devices, given as

ρfa =
1

K

∑
k∈x[j]

P
{
Γ
[j]
k = 0 | x[j]

k = 1
}
. (3.26)

• Misdetection rate: This metric evaluates the rate of illegitimate IoT devices being

misdetected, given as

ρmd =
1

K

∑
k∈x[j]

P
{
Γ
[j]
k = 1 | x[j]

k = 0
}
. (3.27)

• Spreading sequence collision rate: This metric evaluates the rate of legitimate IoT

devices utilising the same spreading sequence in the same access time slot, given
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Figure 3.4: False alarm rate, ρfa, versus the time between updates (sec), with the total
number of potential devices K = 200, the number of resources N = 100, and the number
of active devices S = 20.

as:

ρsc =
1

K

∑
k∈x̃[j]

P
{
γ
[j](l)
k == γ

[j](l)
i ̸=k

}
. (3.28)

3.5.3 Authentication Performance

Fig. 3.4 plots the false alarm rate, ρfa, versus the time between updates (sec) forK = 200,

N = 100, and S = 20. The false alarm events are avoided in the proposed authentication

scheme due to the spreading sequences-based seed generation technique proposed in this

work. The spreading sequences-based seed generation allows AP and IoT devices to

independently acquire identical seeds for the access time slots generation. In essence,

the access time slots generated in the proposed authentication scheme between the AP

and an IoT device are identical and do not require parity bits for seed reconciliation.

On the contrary, since the benchmark schemes rely on estimates of multiple attributes

of the physical channel, false alarm events are inevitable due to the imperfect and time-

varying nature of the physical channel encountered due to reliance on the randomness

of the channel for seed acquisition. Moreover, lower SNR could lead to a higher false

alarm rate in physical-channel-based schemes since its performance explicitly relies on

observing physical-channel attributes.

Fig. 3.5 plots the misdetection rate, ρmd, versus SNR (dB) for K = 200, N = 100,
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Figure 3.5: Misdetection rate, ρmd, versus SNR (dB), with the total number of potential
devices K = 200, the number of resources N = 100, and the number of active devices
S = 20.

and S = 205. We can observe that in the entire SNR range, the proposed authentica-

tion scheme’s misdetection rate decreases and achieves a near-threefold performance gain

against the benchmark schemes at the higher SNR range. For instance, the performance

gain is around 10 dB compared to the traditional BHT-based authentication scheme at

SNR = 6 dB. This trend is because the AP and IoT devices identically but independently

generate the access time slots using the spreading sequences. These spreading sequences

and the access time slots are then used for IoT device authentication. Hence, the pro-

posed authentication scheme is robust in the noisy wireless communication environment.

Fig. 3.5 also demonstrates the authentication performance of the benchmark schemes for

single and multiple attributes, which rely on estimates of these attributes from the phys-

ical channel for device authentication. It can be seen that the benchmark schemes have

a higher misdetection rate at lower SNR, which is due to the imperfect physical-channel

mismatch between the AP and IoT devices, which requires the continuous updating of the

decision boundary. More importantly, the reliance of the proposed authentication scheme

on spreading sequences for continuous authentication adds an additional element to the

authentication mechanism and generally makes it more difficult for an illegitimate device

to spoof the AP under the proposed authentication protocol. By employing our proposed

authentication scheme, the AP gains the ability to differentiate between legitimate and

5Fig. 3.5 is simulated with 100,000 Monte Carlo trials to evaluate its performance for the entire SNR
range. This simulation took 19 hours to execute on the Gadi NCI supercomputer.
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Figure 3.6: Misdetection rate, ρmd, versus SNR (dB) for the varying number of active
devices S, with the total number of potential devices K = 200, and the number of
resources N = 100.

illegitimate devices based on their utilisation of spreading sequences and transmission

characteristics. Consequently, our proposed authentication scheme eliminates the dis-

parities introduced by distance-related factors when distinguishing between legitimate

and illegitimate devices, and therefore, the correlated physical channel characteristics do

not play a role in spoofing the AP.

3.5.4 Robustness in Different Configurations

Fig. 3.6 plots the misdetection rate, ρmd, versus SNR (dB) for the varying number of

active devices S, with K = 200, and N = 100. It can be seen that the proposed authen-

tication scheme is capable of handling a variety of active transmitting devices S. This

is because the proposed authentication scheme does not rely on physical channels for bi-

nary testing as a decision boundary, which requires an update to the decision boundary

for every change in the number of active devices S. Since the proposed authentication

scheme relies on the spreading sequences extracted from the codebook matrix, the pro-

posed authentication scheme can adapt to any number of active transmitting devices S.

It should be noted that the reduction in misdetection rate ρmd, caused by the increase in

the number of active transmitting devices S is due to the device estimation errors, which

is a side effect of the grant-free NOMA system.

Fig. 3.7 plots the spreading sequence collision rate, ρsc, versus the number of active

devices S for different OF settings, with K = 200. The spreading sequence collision rate
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Figure 3.7: Spreading sequence collision rate, ρsc, versus the varying number of active
devices S, with the total number of potential devices K = 200.

ρsc increases with the number of active devices S. It is also evident that a low number of

resources N results in a higher OF, which also increases the spreading sequence collision

rate ρsc. This is because when more active devices S transmit simultaneously with shared

resources N , the probability of the two or more active devices using the same resource

for transmission increases, which increases the spreading sequence collision rate ρsc. It

should be noted that these collisions result from the system’s bottleneck due to the

inherent nature of the grant-free NOMA systems. Even so, the proposed authentication

scheme can handle various active devices S and therefore is robust to different system

settings.

Fig. 3.8 plots the misdetection rate, ρmd, versus the time between updates (sec) for

K = 200, N = 100, and S = 20. It can be seen that with the increase in the length

L of the access time slots, the misdetection rate ρmd of the proposed authentication

scheme decreases. This is because the longer length of access time slots results in a more

randomised transmission pattern for legitimate IoT devices, which is difficult for an il-

legitimate device to predict and spoof the AP. However, shorter lengths of access time

slots, which result in a higher misdetection rate, are less computationally expensive to

generate. Therefore, the choice between the length of the access time slots and the sys-

tem’s computational requirements is a trade-off that can be carefully chosen, depending

on the requirement of the network.

Fig. 3.9 plots the computational cost versus the time between updates (sec) for K =

200, N = 100, and S = 20. It can be seen that the proposed authentication scheme
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Figure 3.8: Misdetection rate, ρmd, versus the time between updates (sec) for the varying
length of authentication sequence L, with the total number of potential devices K = 200,
the number of resources N = 100, and the number of active devices S = 20.

attains a lower computational cost than the benchmark schemes. This is because the

proposed authentication scheme relies on the access time slots and the spreading pools

as its source of IoT device authentication. Since the codebook matrix, which is utilised

to derive the spreading pools, is managed by the AP and does not require creating

any threshold boundaries, the proposed scheme has a lower computational cost. On

the contrary, the physical-channel-based benchmark schemes rely on a computationally

expensive exhaustive search to derive decision boundaries for IoT device authentication.

Furthermore, methods such as SVM and hypothesis testing are required for continuous

parameter updates due to the time-varying nature of the physical channel for device

authentication.

3.6 Summary

In this work, we proposed a secure and efficient continuous authentication scheme for IoT

devices. Our scheme utilised the grant-free NOMA protocol’s transmission characteris-

tics as a source for seed generation and device authentication. By utilising pre-arranged

access time slots and spreading sequences of IoT devices at the AP, the proposed scheme

eliminated the need for channel probing, seed reconciliation, and authentication. Simula-

tion results demonstrated the effectiveness of the proposed scheme, with a near three-fold

reduction in misdetection rate and close to zero false alarm rate in various system config-
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Figure 3.9: Computational cost versus the time between updates (sec), with the total
number of potential devices K = 200, the number of resources N = 100, and the number
of active devices S = 20.

urations. Additionally, our proposed scheme offered computational efficiency compared

to benchmark schemes based on SVM and BHT utilising physical channel information,

with at least half the computational cost.





Chapter 4

IoT Device Authentication in

Non-Terrestrial Networks

4.1 Introduction

This chapter builds upon the traditional AKMA framework by tailoring it specifically

for IoT networks operating over LEO satellites. To provide context, the AKMA frame-

work is a protocol designed to ensure mutual authentication between devices and the

network and provide secure key management. In its traditional implementation, AKMA

operates by pre-registering devices with a central authentication server, where a shared

secret key is established. This key serves as the basis for deriving session keys during

authentication. When a device initiates a connection, it sends an authentication request

containing cryptographic data derived from the shared key. The authentication server

validates the request and responds with a session key that facilitates secure commu-

nication. This framework’s design makes it well-suited for mobile devices but not for

resource-constraint IoT devices since it assumes a centralized infrastructure and static

terrestrial network, which limits its applicability in dynamic and decentralized environ-

ments like LEO satellite-based IoT networks.

Extending the authentication framework from terrestrial (Chapter 3) to non-terrestrial

networks, this chapter tackles the unique challenges posed by LEO satellite-based IoT

systems. While both frameworks share a reliance on physical layer security principles,

the dynamic topology, high mobility, and latency-sensitive nature of LEO networks ne-

cessitate a fundamentally different approach. Building on the authentication scheme

discussed in Chapter 3, this chapter proposes modifications to decentralize the process,

adapt to frequent handovers, and mitigate vulnerabilities specific to satellite networks.

75



76 IoT Device Authentication in Non-Terrestrial Networks

In this third technical chapter, we introduce an enhanced version of the AKMA authen-

tication framework, tailored explicitly for use within LEO satellite-based IoT networks.

Our proposed framework provides robust authentication for legitimate communications

by employing pre-arranged access time slots for each IoT device, significantly increasing

the complexity for potential spoofers. Unlike traditional approaches, our framework fa-

cilitates these access time slots based on mutual agreements between IoT devices and the

corresponding serving satellite without necessitating additional hardware—leveraging the

AKMA key and codebook matrix for slot generation. This setup ensures unpredictabil-

ity for adversaries [2] and supports scalable deployments in massive IoT environments.

The generation of access time slots occurs independently at both the serving satellite

and IoT devices, allowing for seamless operation. Any discrepancy in the access time

slots between an IoT device and the satellite is detected by the satellite, which then

flags the device as illegitimate. To our best knowledge, this is the first work to adapt

the AKMA authentication framework for concurrent authentication across multiple IoT

devices, utilising the AKMA key and codebook matrix as the foundational authentication

mechanism.

The rest of this chapter is organised as follows. In Section 4.2, we review the related

studies of authentication schemes for LEO satellite-based IoT networks. In Section 4.3,

we present the system model and the authentication problem. In Section 4.4, we describe

the proposed authentication scheme and provide a detailed description of the different

phases of device authentication. Finally, in Section 4.5, we present the simulation results

to verify the performance gain of the proposed technique.

4.2 System Model

In this work, we consider a LEO satellite-based IoT network. We assume that K IoT

devices are in a remote location and do not have access to a fixed AP in their vicinity.

The LEO satellite network provides coverage to IoT devices. Each satellite has a foot-

print/coverage area on the ground. IoT devices talk to the satellite, which offers the

best coverage. Here, without the loss of generality, we consider one such satellite provid-

ing coverage to K IoT devices, as illustrated in Fig 4.11. We assume that IoT devices

have limited computing and battery capabilities and rely on intermittent transmission

to conserve resources. During communication sessions, a subset M of the K devices in-

1Although this work primarily focuses on a single satellite scenario, the proposed authentication
scheme can extend to multiple satellites in a constellation by leveraging inter-satellite communication
protocols to maintain continuous authentication state across satellite handovers. This aspect is outside
the current scope of this work and will be the subject of future work.
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Figure 4.1: Illustration of the system model for LEO satellite-based IoT network. The
transmission from the IoT devices to the serving satellite includes a line-of-sight and a
scattering component. The transmission from the UAV to the serving satellite is line-of-
sight.

termittently becomes active to transmit data, employing the irregular repetition slotted

ALOHA (IRSA) protocol [138] for medium access, which accommodates the sporadic

nature of IoT device activity. We consider an overloaded system where the number of

resource blocks N is less than the number of IoT devices in a cell, i.e., N < K.

4.2.1 Threat Model

We assume the presence of an unauthorised device in the satellite’s coverage area. Fur-

ther, we assume that this unauthorised device is a UAV situated above the legitimate

IoT devices, leading to a correlated physical channel environment. Consequently, the

satellite might concurrently receive transmissions from legitimate IoT devices and illegit-

imate UAV devices. This illegitimate device may attempt unauthorised network access

through sophisticated strategies like man-in-the-middle and spoofing attacks. We assume

that the illegitimate device possesses superior computational resources compared to the
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Table 4.1: Important symbols used in this paper.

Variable Description

K Total number of IoT devices

N Total subcarriers

M Active number of IoT devices

J Number of time slots

c Spreading sequence

h Channel

x Transmit signal

w Gaussian noise

y Received signal

G Synthesis of channel vector and spreading sequences

H Channel matrix

C Codebook matrix

X Transmit signal (continuous time slots)

Y Received signal (continuous time slots)

Γ Authenticated devices’ indicator

l Duplicate replicas of packet

Kd AKMA key

K ′
d Modified AKMA key

ω Length of slots within a frame

n Size of the codebook matrix

legitimate IoT devices, i.e., it adopts identical system parameters and upper layer sig-

nalling as legitimate IoT devices, as detailed in Table 4.1, and also maintains persistent

network surveillance to discern transmission patterns of legitimate IoT devices.

4.2.2 Signal Model

Considering an arbitrary symbol interval, an IoT device randomly wakes up and trans-

mits its complex modulated signal toward the satellite, which is independent random

variables drawn from a standard symmetric discrete constellation set. After modulation,

the transmitted symbol xk from the k-th IoT device is spread onto a spreading sequence

ck of length N . The received signal y on the n-th subcarrier at the satellite is given as

yn =
K∑
k=1

hnkcnkxk + wn, (4.1)
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where hnk refers to the channel gain of the k-th IoT device’s n-th subcarrier, cnk refers

to the n-th component of the spreading sequence ck, and wn is the Gaussian noise on

the n-th subcarrier with zero mean and variance σ2.

By combining the received signals over all N subcarriers, the received signal vector

y = [y1, y2, . . . , yN ]T ∈ CN×1 at the LEO satellite is given as

y = Gx+w, (4.2)

where x = [x1, x2, . . . , xK ]T ∈ CK×1 is the transmitted signal vector for all K devices

and w = [w1, w2, . . . , wN ]T ∈ CN×1 is the noise vector. G ∈ CN×K is the synthesis of

the channel vectors and spreading sequences, given as

G = H⊙C, (4.3)

where H = [h1,h2, . . . ,hK ] ∈ CN×K is the channel matrix, C = [c1, c2, . . . , cK ] ∈ CN×K

is the codebook matrix, and ⊙ is the Hadamard product, i.e., gnk = hnkcnk [1].

4.2.3 Channel Model

We adopt the state-of-the-art line-of-sight based satellite channel model in [139–141].

The channel hnk of the k-th IoT device on the n-th subcarrier to the LEO satellite is

modelled as

hnk = hraye
jϕray + hlose

jϕlos , (4.4)

where the channel between the k-th IoT device and the associated satellite encompasses

two primary components: a scattering component and an LOS component. The scat-

tering component’s amplitude, hray, adheres to a Rayleigh distribution while its phase,

ϕray, is uniformly distributed within the range [−π, π]. In contrast, the LOS component

is characterised by amplitude, hlos, that follows a Nakagami-m distribution indicative of

a quasi-static channel with a specified m-factor, and its phase ϕlos remains constant. It

is pertinent to mention that the variability in the amplitude hlos predominantly stems

from shadowing effects, as elaborated in [141].

Further, the free-space path loss is used to estimate the loss of signal strength in

the free-space environment since, in satellite communications, the majority of the signal

path is unobstructed. Accordingly, the path loss between the k-th IoT device and the

serving satellite is represented by 20 log10(di)+20 log10(f)−147.55, where di denotes the

distance in kilometres and f represents the centre frequency. Additionally, due to the

higher orbital velocities of LEO satellites, we introduce a Doppler frequency shift (DFS)
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in the form of phase frequency offset, represented by fd = v×f/c, where v is the velocity

of the satellite, c is the speed of light.

4.2.4 Medium Access Model

Due to their inherent stochastic transmission patterns, IoT devices employ IRSA as their

medium access protocol for satellite communications [138]. Within this framework, a k-

th IoT device will dispatch l duplicate replicas of its packet in a single frame. To further

elucidate, each replica’s header embeds information regarding the positions of its coun-

terparts. If a replica undergoes successful decoding, it becomes feasible to reconstruct

and subsequently subtract its associated replicas from the frame.

With these considerations in mind, it becomes pertinent to augment the signal model,

as portrayed in (4.2), transforming it from a single time slot transmission paradigm to

one that encompasses continuous time slots. Accordingly, the transmitted signals X =[
x[1],x[2], . . . ,x[J ]

]
∈ CK×J are recovered from the received signalsY =

[
y[1],y[2], . . . ,y[J ]

]
∈

CN×J in J continuous time slots. Thus, the continuous time-slots transmission model

for the j-th time slot is given as

y[j] = G[j]x[j] +w[j], j = 1, 2, . . . , J, (4.5)

where G[j] ∈ CN×K is the synthesis of the channel vectors and spreading sequences in

the j-th time slot and w[j] is the equivalent Gaussian noise vector in the j-th time slot.

4.2.5 Problem Statement

In the context of IoT devices engaging in communication with LEO satellite networks,

the intermittent communication patterns of IoT devices provide a window for unautho-

rised entities to masquerade as legitimate devices, thereby compromising the integrity

of the satellite link and infiltrating the core network. When an IoT device initiates a

transmission to a satellite in the j-th time slot, the primary task of the satellite network

is to verify the message’s authenticity, ensuring it originates from a verified IoT device.

This necessitates a predefined consensus between the satellite network and the authentic

IoT devices on specific signal characteristics or transceiver attributes that are instrumen-

tal in differentiating legitimate devices from illegitimate devices. Let Γ[j] symbolise the

authentication status of devices in the j-th time slot, where the authentication challenge
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is mathematically formulated as

Γ[j] =

 1 if H0

0 if H1

, (4.6)

with H0 and H1 denoting the hypothesis that the received signal y[j] in the j-th time

slot originates from a legitimate or an illegitimate IoT device, respectively. Traditional

methodologies [83, 120, 121] depend on quantisation thresholds for authentication deci-

sions. Nevertheless, the accuracy of these methods substantially decreases due to quanti-

sation inaccuracies, and pinpointing optimal detection thresholds for persistent authen-

tication across an extensive array of IoT devices is impractical due to the exhaustive

search required to ascertain these thresholds.

Moreover, the reliance of these traditional approaches on processes such as seed gen-

eration, verification, reconciliation, and authentication of IoT devices [80, 81, 122], while

effective within terrestrial 5G infrastructures, poses significant challenges when applied

directly to non-terrestrial environments, necessitating a reevaluation towards a more de-

centralised authentication strategy. The challenges include:

• The continuous authentication protocol employed by AKMA conflicts with the en-

ergy conservation strategies of IoT devices, which are designed to minimise trans-

mission frequency to conserve power. This leads to increased energy consumption

and reduced device longevity.

• The centralised nature of AKMA amplifies security and privacy risks, particularly

the susceptibility to man-in-the-middle attacks during the key exchange process,

thereby compromising the security integrity of the network.

• Lastly, the static framework of AKMA struggles to adapt to the dynamic topolo-

gies characteristic of LEO satellite networks, potentially leading to authentication

bottlenecks and service interruptions.

• Implementing AKMA across LEO satellite networks entails significant complexity,

driven by the infrastructure requirements of a centralised authentication system.

Decentralised methods could alleviate these concerns by utilising network-based

metrics for authentication, thereby simplifying infrastructure needs.

These considerations conclude that the AKMA framework, while robust within its in-

tended terrestrial scope, is ill-suited for the distinctive operational paradigms of LEO
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satellite-based IoT networks. Therefore, exploring and developing innovative, decen-

tralised authentication methods becomes essential. Such methods should be specifically

tailored to meet the unique requirements of LEO satellite environments, ensuring scalable

and secure device communication.

4.3 Proposed Modified AKMA Framework

At the satellite, the primary goal is to authenticate IoT devices using the received signal

y[j]. To achieve this robust mutual authentication, the transceiver pair must generate a

unique seed, undisclosed to external devices. This seed must be periodically refreshed to

ensure its continued validity. Finally, each transceiver pair must manage its authentica-

tion process in a decentralised manner. Such an approach guarantees that a legitimate

IoT device can integrate into the network during any satellite handover without impact-

ing the authentication status of other devices already in the network. Accordingly, our

proposed authentication framework unfolds in two distinct steps.

1. Seed Generation: A concatenation of diversified functions is employed to com-

pute a unique seed value for the initial and subsequent transmission of IoT devices.

2. Transmission Pattern Generation: Utilising the seed value derived in the pre-

vious step, a specific transmission pattern is generated. This pattern instructs IoT

devices on their transmission when communicating with satellites.

It is pivotal to note that, unlike terrestrial AKMA, the seed calculation and transmission

pattern generation processes proposed in our modified AKMA framework are indepen-

dently executed at the satellite and the IoT devices. Such independence ensures system

robustness, significantly mitigating potential false alarms. This interaction of the pro-

posed authentication scheme is illustrated in Fig. 4.2. The steps are described in detail

below.

4.3.1 Seed Generation

The proposed seed generation mechanism has three parts.

4.3.1.1 Initial Slot Selection

An IoT device randomly transmits l packets in a frame to minimise packet collision and

maximise throughput. We use this randomness to our advantage by using it as a source
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Figure 4.2: Flowchart of proposed authentication framework and its interaction with
IRSA-based transmission model considered in this work.
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for seed generation. Accordingly, the primary objective of this phase is to derive an

initial seed that determines the starting slot in a communication frame for data packet

transmission. The mathematical representation for this is given by:

Sinitial = f1(Kd, ω,C), (4.7)

where C is the codebook matrix in (4.3) and the function f1 is defined as:

f1(Kd, ω, n) = (Kd ⊕ H(ω))× n, (4.8)

where Kd denotes the unique AKMA key, ω specifies the length of slots within a frame,

H(·) represents a hashing function, and n indicates the size of the spreading sequences

codebook matrix. The initial slot selection function, f1, determines the seed by perform-

ing an XOR operation between Kd and the hash of the slot size. This result is then

multiplied with n to ensure that the derived slot number, Sinitial, remains within the

valid slot range.

4.3.1.2 Slot Update Mechanism

To maintain continuous authentication, the IoTs and satellite must refresh the seed inde-

pendently. Accordingly, this proposed procedure computes the seed for frames subsequent

to the initial one, considering the replicated packets dispatched by an IoT device. It is

expressed as:

Snext = f2(Kd, Sinitial, l, n), (4.9)

where the function f2 is represented as:

f2 = (Kd ⊕ Sinitial ⊕ l)× n. (4.10)

Herein, Sinitial is initially determined by f1, but for subsequent iterations, its value is

derived from Snext. The term l enumerates the replicated packets transmitted by an IoT

device. The function f2 updates the seed considering the AKMA key Kd, the present

slot S, and the number of data packets. An XOR operation is executed on these entities

to compute the next seed.

4.3.1.3 AKMA Key Update Mechanism

The IoT devices waking up after a prolonged sleep schedule are required to refresh the

AKMA key Kd. Accordingly, this phase is crucial for refreshing the AKMA key by
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considering the replicated packet count and the preceding slot value ascertained from f2.

This is mathematically represented as:

K ′
d = f3(Kd, l, Slast), (4.11)

where f3 is given by:

f3(Kd, l, Slast) = H(Kd ⊕ l ⊕ Slast). (4.12)

Herein, Kd represents the initial AKMA key, which in subsequent iterations is replaced

by its latest version K ′
d. The term l is the number of replicated packets from the IoT

device, while Slast denotes the final value from f2. The function f3 delineates a strategy

for AKMA key updating. This is achieved by executing an XOR operation on Kd, the

packet count, and the last slot number Slast. Subsequently, the outcome of this operation

undergoes hashing to yield the refreshed key K ′
d.

4.3.2 Transmission Pattern

The time slots for transmitting data from IoT devices are divided into fixed-length re-

curring intervals [87]. These transmission patterns are agreed upon in advance between

the IoT devices and the satellite. Consequently, the satellite can quickly identify unau-

thorised devices based on their assigned transmission patterns. Transmission patterns

eliminate the need for a shared secret key for every transmission, as the transmission

schedules are followed by the IoT devices and verified by the satellite.

The transmission patterns are generated using non-linear feedback shift registers (NF-

SRs), which offer an enhanced level of unpredictability that is especially suited for IoT

devices communicating with LEO satellites in uplink scenarios. The patterns produced by

NFSRs exhibit non-linear dependencies on previous states, which makes them inherently

more chaotic and challenging to predict than sequences produced by linear feedback shift

registers [125]. This non-linear behaviour avoids computational burdens and presents an

efficient framework for IoT applications. For an NFSR of length µ, a non-linear feed-

back function determines the next state of the NFSR. The generating non-linear monic

polynomial for a generic variable κ is given as

γ(κ) =C0 + C1κ + C2κ2 + . . .+ Cµκµ +D sin(βκα)

=

i=µ∑
i=1

Ciκi +D sin(βκα), (C0, Cµ = 1, D, β, α ∈ R)
(4.13)

where C0, Cµ, D, β, α are various constants with C0, Cµ set to 1 to ensure the polynomial
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is monic, and the sin(·) function adds a non-linear component to the polynomial. The

precise nature of this function defines the complexity and unpredictability of the sequence

produced by the NFSR.

For unauthorised entities, predicting the non-linear feedback function f is challenging.

This complexity is accentuated when the satellite and IoT devices have the flexibility to

modify the function periodically, thus enhancing the security of transmissions. The cre-

ation of transmission patterns using the NFSR is synchronised and decentralised at the

satellite and the k-th IoT device, ensuring the consistent and secure relay of information.

By leveraging shared identical seeds, both entities can avoid repeated hash function op-

erations for seed security for every transmission, underlining the efficiency and simplicity

of the proposed authentication framework.

4.3.3 Authentication Decision

In summary, the proposed authentication framework does not rely on centralised key

refreshment for IoT device authentication. Instead, the IoT devices and satellites inde-

pendently generate a seed from the system network parameters. Subsequently, the seed

generates transmission patterns for IoT device transmission and authentication. This au-

thentication process is summarised in Algorithm 1, and the main procedure is presented

as follows.

• Initialisation Requirements: The algorithm initialises with the requisite inputs: a

device-specific secret AKMA key Kd, the length of slots within a frame ω, the size

of the spreading sequences codebook matrix n, and a counter l for enumerating the

replicated packets transmitted by an IoT device.

• Objective: The aim is to ensure secure and authenticated data transmission be-

tween the IoT devices and the LEO satellite by mitigating risks associated with

centralised key management systems, thereby enhancing communications security

in LEO satellite IoT networks.

• Function f1: Generates the initial seed Sinitial for data transmission through the

XOR operation between Kd and the hash of ω, followed by multiplication with

n. This seed is crucial in determining the starting slot of the data transmission,

particularly after an IoT device becomes active.

• Function f2: Produces the subsequent seed
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Algorithm 3 The proposed authentication framework.

Input Kd, ω, n, l.
Output Secure and authenticated data transmission for IoT devices.

1: function f1(Kd, ω, n)
2: Sinitial ← (Kd ⊕ H(ω)) · n
3: return Sinitial
4: function f2(Kd, Sinitial, l, n)
5: Snext ← (Kd ⊕ Sinitial ⊕ l) · n
6: return Snext
7: function f3(Kd, Slast, l)
8: K ′

d ← H(Kd ⊕ l ⊕ Slast)
9: return K ′

d

10: procedure TransmitData(x)
11: if IoT device wakes up with data x then
12: if First transmission after wake-up then
13: Sseed ← f1(Kd, ω, n)
14: else
15: Sseed ← f2(Kd, Sinitial, l, n)

16: γk(κ) =
∑i=µ

i=1 Ciκi +D sin(βκα)
17: Transmit data x using transmission pattern γk
18: if Prolonged sleep detected then
19: K ′

d ← f3(H(Kd ⊕ l ⊕ Slast))
20: else
21: K ′

d ← Kd

22: procedure ReceiveData(y)
23: for j = 1 to J

24: if γ
[j]
k [satellite] == γ

[j]
k [device] then

25: Γ
[j]
k = 1.

26: else
27: Γ

[j]
k = 0.
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Snext utilising Kd, Sinitial, the counter l, and the nonce n. The incorporation of l

ensures the uniqueness of each subsequent seed by refreshing it independently and

bolstering security against replay attacks.

• Function f3: Updates the device-specific secret key toK ′
d through hashing the XOR

combination of Kd, l, and the last seed Slast. This dynamic independent AKMA

key upgrade further secures the transmission process against potential man-in-the-

middle attacks.

• Procedure TransmitData: Details the process for an IoT device to transmit data

x, determining the appropriate seed Sseed for use—either through f1 or f2. The

IoT device employs a specific transmission pattern γk(κ) for transmitting x based

on the generated seed. Upon detection of prolonged inactivity, the AKMA key Kd

is updated using f3; otherwise, it remains unchanged.

• Procedure ReceiveData: Details the process for a LEO satellite to authenticate

the data from IoT devices by comparing the received and expected transmission

patterns. A match signals successful authentication (Γ
[j]
k = 1), while a mismatch

indicates failure (Γ
[j]
k = 0).

At the end of the iteration, the authenticated devices data, corresponded by Γ
[j]
k = 1, in

the j-th time slot is transformed into a sparse vector, where the data of the illegitimate

devices is replaced with 0’s, whereas the authenticated devices data is recovered.

4.4 Security Analysis

The proposed authentication scheme, a novel adaptation of the AKMA framework for

LEO satellite-based IoT networks, showcases significant advancements in authentication

security. This section examines the scheme’s resilience against prevalent threats, such as

MITM attacks and unauthorized access.

4.4.1 Mitigation of MITM Attacks

The MITM attack can be modelled as a search space Ω problem for the insertion of an

unauthorized node. In this formulation, the adversary’s success probability corresponds

directly to the size of the search space they must traverse. By carefully designing the

proposed authentication framework, we ensure that the search space size remains com-

putationally infeasible. To maintain this level of security, the uniformity of the search
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space is paramount, ensuring that no part of the space is more likely to contain a solution

than another.

To quantify the security offered by our proposed authentication scheme, we analyze

the search space for each component: Initial Slot Selection, Slot Update Mechanism,

AKMA Key Update Mechanism, and Transmission Pattern Generation. Each mecha-

nism provides additional cryptographic complexity that helps secure the authentication

process.

4.4.1.1 Initial Slot Selection:

In this stage, each IoT device computes an initial slot value Sinitial using the function

f1 that depends on the AKMA key Kd, slot length ω, and spreading sequence C. For

an adversary to determine Sinitial without prior knowledge of Kd and H(ω), the search

space size is given by

ΩInitial = 2κ+b, (4.14)

where κ is the bit-length of Kd, and b is the bit-length of the hash H(ω). Assuming

κ = 128 and b = 128, the effective search space size becomes

ΩInitial = 2256. (4.15)

4.4.1.2 Slot Update Mechanism:

The slot is periodically updated with the function f2, which depends on Kd, Sinitial, the

number of packet replicas l, and codebook matrix size n. The search space for determining

Snext is given by

ΩSlot Update = 2κ+l+n. (4.16)

For typical values of κ = 128, l = 3, and n = 200, the search space size becomes:

ΩSlot Update = 2331. (4.17)

4.4.1.3 AKMA Key Update Mechanism

The AKMA key Kd is periodically updated to prevent long-term exploitation by adver-

saries. The adversary’s task of predicting K ′
d involves traversing a search space size given

as

ΩAKMA Update = 2κ+l. (4.18)
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Substituting typical values of κ = 128 and l = 3, the search space size becomes:

ΩAKMA Update = 2131. (4.19)

4.4.1.4 Transmission Pattern Generation

The transmission pattern, generated using an NFSR polynomial, creates another inde-

pendent security layer. The size of the search space for replicating the transmission

pattern is given by

ΩPattern = 2µ, (4.20)

where µ represents the bit-length of the polynomial. For µ = 128, the resulting search

space size is given as

ΩPattern = 2128. (4.21)

To successfully execute an MITM attack, an adversary must traverse the combined

search space of all four components: Initial Slot Selection, Slot Update, AKMA Key

Update, and Transmission Pattern replication. The total search space size is thus the

product of the search space of the individual components, given as

ΩMITM = ΩInitial · ΩSlot Update · ΩAKMA Update · ΩPattern. (4.22)

Substituting the values gives

ΩMITM = 2256 · 2331 · 2131 · 2128 = 2846. (4.23)

Given the enormity of this search space, the attack is computationally infeasible for

classical adversaries. Even with Grover’s quantum search algorithm [?], which reduces

the effective search space to its square root, the size remains prohibitively large, given as

ΩMITM =
√
2846 = 2423. (4.24)

The multi-layered approach of the proposed authentication scheme introduces a series

of independent probabilistic barriers, effectively transforming the MITM attack into a

computationally infeasible search problem. The overall complexity of the search space,

coupled with the uniformity of its distribution, ensures robust security against classical

and quantum adversaries alike.
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4.4.2 Prevention of Unauthorized Access

The framework’s ability to detect discrepancies in transmission patterns between IoT de-

vices and satellites is a robust mechanism to prevent unauthorized access. Any deviation

in the pre-arranged transmission slots, independently verified at both ends, immediately

flags the device as illegitimate. This approach ensures that only devices that can cor-

rectly generate and follow the agreed-upon transmission patterns are authenticated and

allowed access to the network.

Moreover, the periodic refreshment of the AKMA key Kd based on the number of

packets transmitted l and the last seed value Slast ensures that the keys remain current

and are difficult for unauthorized entities to predict. This continuous update mecha-

nism ensures that even if an attacker gains temporary access, their ability to maintain

unauthorized access over time is severely limited.

The decentralized and continuous authentication framework tailored for LEO satellite-

based IoT networks effectively tackles several critical security challenges. By leveraging

localized key refreshment, independent seed generation, and unique transmission pat-

tern generation, the proposed authentication scheme fortifies the security of IoT device

authentication. It ensures scalable and efficient authentication ideally suited for LEO

satellite networks’ dynamic and high-velocity environment.

4.5 Results and Discussion

In this section, we assess the performance of the proposed authentication framework.

We compare the performance of our proposed authentication framework with physi-

cal channel-based authentication using binary hypothesis testing [84], support vector

machine-aided detection [142], and with Diffie-Hellman (DH) key exchange protocol [143].

Together, these benchmarks provide a balanced and varied basis for evaluating the ef-

fectiveness of our proposed authentication scheme. While the core working of these

benchmark solutions is adopted from their respective works, we have adjusted their con-

figurations to suit our system model for a fair comparison. For the physical channel-based

benchmark schemes, we utilize the estimates of the received signal strength indicator

(RSSI) and DFS as attributes extracted from the physical channel to authenticate the

IoT devices. Furthermore, we assume that the physical channels of the illegitimate UAV

device are correlated with those of the legitimate IoT devices [2]. This is because the

UAV is deployed at a height of 120 meters, which is much smaller than the height of the

satellite.
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Table 4.2: Access time slots generation using seed.

State Observations

Spreading pool utilised
between a transceiver pair

γ = {−104− 104i, 8i, 39 + 39i, . . . ,−2 + 2i, 4}

Seed extracted by the satellite 1101010110010

Seed extracted by the IoT 1101010110010

Access time slots at the satellite
and IoT

1000000011111111010100101010111011111110
0100010011111111010101011011101000000010
1011000001010111111011111101110110111000
0001000110101010001101000100011111011100
0101010100000110111111000101000000000010

Assuming initial authentication between a transceiver pair in the j-th time slot, their

observation characteristics are shown in Table 4.2. As detailed in section III, the serving

satellite and IoT device independently extract the seed using the AKMA key, the length

of slots within a frame, and the size of the spreading sequences codebook matrix. Since

the seed source is extracted from these parameters independently and available with the

transceiver pair locally, there is no requirement for seed verification. Therefore, once the

seed is acquired, the serving satellite and IoT independently generate the access time

slots required for transmission. In this work, we utilise the following non-linear monic

polynomial for the access time slots generation

γ(κ) = 1 + κ1 + κ3 + sin(κ5). (4.25)

4.5.1 Experimental Setup

In the 3GPP framework, six reference scenarios have been specified [144–146]. In this

work, we consider scenario D2 in [145], where the serving satellite has a speed of 7.56

km/s with an altitude of 600 km from the IoT devices [147]. The serving satellites operate

at 2.4 GHz frequency with a max receiver gain of 30 dBi, whereas the IoT devices utilise

0 dBi antenna gain. In the simulations, unless otherwise specified, we consider a scenario

where K = 1000 potential devices share N = 400 resources simultaneously. For each

time frame, we randomly selectM = 200 active devices from the set {1, 2, . . . ,K}. Every
active device transmits l = 3 replicas of the same packet. The total number of time slots

is fixed at J = 10. To transmit the signals, the IoT devices use QPSK modulation.

The SNR is varied within the range of 0 to 20 dB. For device detection, we employ the

orthogonal matching pursuit-based detection [148]. The results are averaged over 1000
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Monte Carlo trials.

The simulations are carried out on MATLAB 2021b running on the Gadi supercom-

puter of the National Computational Infrastructure (NCI), Australia, utilising 48 cores

of Intel Xeon Platinum 8274 (Cascade Lake) processors and 250GB of random access

memory. The results are averaged over 1000 Monte Carlo trials.

4.5.2 Performance Metrics

To appropriately evaluate the authentication performance, we use the following metrics:

the authentication rate (ρau) and the misdetection rate (ρmd) as performance metrics.

Given the transmit signal x and the authenticated devices indicator Γ for the k-th IoT

device in the j-th time slot, the performance metrics are defined as follows.

• Authentication rate: This metric evaluates the rate of legitimate IoT devices being

accurately detected as legitimate devices, given as

ρau =
1

K

∑
k∈x[j]

P
{
Γ
[j]
k = 1 | x[j]

k = 1
}
. (4.26)

• Misdetection rate: This metric evaluates the rate of illegitimate IoT devices being

misdetected, given as

ρmd =
1

K

∑
k∈x[j]

P
{
Γ
[j]
k = 1 | x[j]

k = 0
}
. (4.27)

4.5.3 Authentication Performance:

Fig. 4.3 plots the authentication rate vs the SNR (dB) for a configuration employing

parameters K = 1000, N = 400, and M = 200. We can see that the benchmark schemes

relying on physical channel attributes perform poorly at the lower SNR range, mainly

due to the correlation of physical channels between IoT devices and unauthorised devices.

Additionally, the proposed authentication scheme also outperforms the DH method by

achieving higher authentication rates due to DH’s susceptibility to man-in-the-middle

attacks and its reliance on the integrity of the physical communication channel. The pro-

posed framework has the best performance for the entire SNR range. This is attributed

to the decentralised seed generation process implemented both at the IoT devices and

the serving satellite, resulting in the independent generation of transmission patterns.

These transmission patterns enhance the robustness of our authentication framework,
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Figure 4.3: Authentication rate versus SNR (dB), with the total number of potential
devices K = 1000, the number of resources N = 400, and the number of active devices
M = 200.

particularly in the challenging noise-prone conditions typical of satellite wireless com-

munications. Note that the authentication rate of satellite IoT networks is generally

poorer than terrestrial networks (where the authentication rate can reach 100%) due to

the greater susceptibility to the physical channel attenuation effects [149].

Figure 4.4: Misdetection rate versus SNR (dB) for the varying number of active devices
M , with the total number of potential devices K = 1000, and the number of resources
N = 400.
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Figure 4.5: Bandwidth cost versus the increasing number of active devices M , with the
total number of potential devices K = 1000, and the number of resources N = 400.

Fig. 4.4 plots the misdetection rate versus SNR (dB) for the varying number of active

devices M , with K = 1000, and N = 400. The figure shows that the misdetection rate

improves as the number of active devices M reduces. This is to be expected due to

device estimation errors. Further, the results indicate the robustness of our proposed

authentication framework in accommodating a diverse range of active devices M . This

resilience is primarily attributed to the framework’s independence from the traditional

reliance on multiple attribute estimates from physical channels, which conventionally

necessitates a recalibration of the decision boundary with any fluctuation in the number

M of active devices. Instead, our framework harnesses transmission patterns derived

from a decentralised seed generation process, endowing it with a scalable adaptability to

any number of active transmitting devicesM . However, it is crucial to recognise that the

observed reduction in misdetection rate with increasing number of active devices M is

primarily due to device estimation errors. Such errors are symptomatic of the systemic

stresses encountered in scenarios of network overloading.

Fig. 4.5 plots the normalised bandwidth cost versus the increasing number of active

devices M , with K = 1000 and N = 400. The proposed authentication scheme ex-

hibits significantly lower bandwidth costs than the other benchmark schemes, which is

attributed to its decentralised authentication strategy. This effectively minimises recon-

ciliation bits by reducing seed mismatch scenarios, thus achieving more efficient band-

width utilisation. In contrast, the DH method shows a higher bandwidth cost. This

increase is due to the necessity for continuous key exchanges between IoT devices and
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Figure 4.6: Computational cost versus the time between updates (sec), with the total
number of potential devicesK = 1000, the number of resources N = 400, and the number
of active devices M = 200.

the LEO satellite prior to establishing a session, leading to a progressive rise in band-

width consumption as the number of active devices increases. Furthermore, the physical

channel-based authentication schemes incur the highest bandwidth costs. These methods

are hampered by frequent seed mismatches resulting from the rapidly changing channel

conditions between IoT devices and the LEO satellite. Consequently, substantial rec-

onciliation bits are needed before authentication can be successfully completed, thereby

elevating the overall bandwidth cost.

4.5.4 Reduced Computational Overhead:

Fig. 4.6 depicts the computational cost as a function of the update interval (seconds)

for a configuration with parameters K = 1000, N = 400, and M = 200. Our proposed

authentication framework significantly reduces computational overhead compared to the

benchmark schemes. Our framework leverages transmission patterns for IoT device au-

thentication and circumvents the necessity for estimating physical channel attributes—a

process typically required in benchmark schemes. This strategy yields a notable decrease

in computational demands. In contrast, our proposed authentication framework obviates

the need to generate such decision thresholds, facilitating a more computationally effi-

cient process. The reduction in computational cost underscores the practical advantages

of our proposed authentication framework in scenarios where computational resources

are limited or when rapid authentication is paramount.
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4.5.5 Emulation

To further evaluate the performance of our proposed authentication scheme against

benchmark schemes, we performed detailed emulations of a LEO satellite-based IoT com-

munication scenario, incorporating realistic parameters to mirror practical deployment

conditions based on parameters from the 3GPP technical reports [150–153]. Specifically,

our emulated LEO satellite IoT testbed is developed using Matlab 2024b and consists of

IoT devices communicating via a constellation of 600 LEO satellites, emulating an envi-

ronment similar to contemporary satellite networks. Communication latency is anchored

in a base link delay of 70 milliseconds, representative of the typical delay experienced

with LEO satellites, and a link bandwidth of 10 Mbps, reflecting the data transmission

rates expected in such settings. Data packets are set at a size of 256 bytes, aligning

with common IoT communication protocols. Each satellite orbits at an altitude of 60

km with a velocity of 7.56 km/s, parameters chosen to approximate real LEO satellite

dynamics. The coverage area per satellite is managed with a 20-degree beam width,

offering practical coverage for the system. We further account for noise and interference

factors, setting the noise power at −120 dBm and applying an interference factor of 0.1,

which collectively emulates environmental and inter-device interference. The IoT devices

maintain an initial power level of 150 mW, while communication incurs an energy cost

of 10 mW, embodying the energy consumption per transmission attempt. To realisti-

cally model handoff scenarios, we set a signal strength threshold for satellite handoff at

−100 dBm. IoT device processing power and memory constraints were also incorporated,

with each device allocated a processing power limit of 100 million instructions per sec-

ond (MIPS) and a memory limit of 512 KB, emulating the computational and memory

demands during authentication processes, which consume 10 MIPS of processing power

and 50 KB of memory per authentication. A weather attenuation factor of 3 dB accounts

for signal degradation due to adverse weather. A slot transmission probability of 0.3 is

chosen to reflect typical access patterns, with an additional penalty factor of 0.5 applied

for IoT devices located in remote areas, where 30% of devices were emulated as situated

in such regions. To model the Doppler effect, we used a carrier frequency of 2.4 GHz and

the speed of light to assess signal shifts due to satellite motion, ensuring comprehensive

alignment with real-world LEO satellite communication dynamics.

Fig. 4.7 illustrates the emulation for average authentication latency (ms) as a function

of the time between updates (seconds) for a configuration with parameters K = 1000,

N = 400, and M = 200. The proposed authentication framework exhibits significantly

lower average authentication latency than the benchmark schemes. For example, at
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Figure 4.7: Average authentication latency versus the time between updates (sec), with
the total number of potential devices K = 1000, the number of resources N = 400, and
the number of active devices M = 200.

time between updates = 7 seconds, our proposed authentication scheme exhibits an 85%

reduction in average authentication latency compared to DH. This reduced latency is

attributed to the inherent efficiency of the proposed framework, which leverages inde-

pendent seed generation and eliminates the need for estimating or reconciling physical

channel attributes. On the other hand, the benchmark schemes require additional trans-

missions for channel reconciliation due to fast fading channel, leading to increased latency,

particularly at longer update intervals. In contrast, our proposed framework avoids these

reconciliation requirements, instead relying on independent seed generation, simplifying

the authentication process and mitigating the communication overhead associated with

multiple back-and-forth exchanges. Consequently, the authentication latency for the

proposed scheme increases at a significantly lower rate as the update interval extends,

highlighting its robustness and practicality for time-sensitive IoT applications.

4.6 Summary

This work proposed a modified AKMA framework for authentication in LEO satellite-

based IoT networks. Our framework encompasses seed generation, seed update, and

seed refreshment, all executed in a decentralised fashion. This facilitates tailored trans-

mission patterns for IoT devices, significantly reducing the frequency of authentication

interactions with the satellite. As a result, our method effectively counters the threats as-
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sociated with the LEO satellite-based IoT networks. Through simulations and emulation,

we have demonstrated a marked improvement in both authentication and misdetection

rates, underscoring the potential of our framework to contribute to secure authentication

measures in LEO satellite-based IoT networks.





Chapter 5

Conclusions and Future Research

Directions

In this chapter, we first summarise the general conclusions drawn from the thesis. We

then outline some of the research directions directly related to the thesis.

5.1 Summary of Key Findings of Thesis

This thesis focused on the design of providing security to IoT devices using the detect,

identify and authentication framework. Specifically, this thesis investigated several chal-

lenges faced by IoT devices suffering from constrained resources and operating both in

terrestrial and non-terrestrial networks. The detailed contributions are given as follows:

5.1.1 IoT Device Detection and Identification

In Chapter 1, we proposed an attention-based BiLSTM network for AUD in an uplink

grant-free NOMA system by exploiting the temporal correlation of active user support

sets. First, a BiLSTM network is used to create a pattern of the device activation history

in its hidden layers, whereas the attention mechanism provides essential context to the

device activation history pattern. Then, the complex spreading sequences are utilised for

blind data detection without explicit channel estimation from the estimated active user

support set. Thus, the proposed mechanism is efficient and does not depend on imprac-

tical assumptions, such as prior knowledge of active user sparsity or channel conditions.

Through simulations, we demonstrated that the proposed mechanism outperforms several

existing benchmark MUD algorithms and maintains lower computational complexity.

101
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5.1.2 IoT Device Authentication in Terrestrial Network

In Chapter 2, we proposed a secure and efficient continuous authentication scheme for

IoT devices. Our scheme utilised the grant-free NOMA protocol’s transmission character-

istics as a source for seed generation and device authentication. By utilising pre-arranged

access time slots and spreading sequences of IoT devices at the AP, the proposed scheme

eliminated the need for channel probing, seed reconciliation, and authentication. Simula-

tion results demonstrated the effectiveness of the proposed scheme, with a near three-fold

reduction in misdetection rate and close to zero false alarm rate in various system config-

urations. Additionally, our proposed scheme offered computational efficiency compared

to benchmark schemes based on SVM and BHT utilising physical channel information,

with at least half the computational cost.

5.1.3 IoT Device Authentication in Non-Terrestrial Network

In Chapter 3, we proposed a modified AKMA framework for authentication in LEO

satellite-based IoT networks. Our framework encompasses seed generation, seed update,

and seed refreshment, all executed in a decentralised fashion. This facilitates tailored

transmission patterns for IoT devices, significantly reducing the frequency of authenti-

cation interactions with the satellite. As a result, our method effectively counters the

threats associated with the LEO satellite-based IoT networks. Through simulations and

emulation, we have demonstrated a marked improvement in both authentication and

misdetection rates, underscoring the potential of our framework to contribute to secure

authentication measures in LEO satellite-based IoT networks.

5.2 Future Research Directions

This section highlights potential research directions inspired by the findings of each re-

search work presented in this thesis, which may serve as focal points for future research

endeavours.

5.2.1 Research Work 1

In this work, we have applied the proposed framework to a spreading-based grant-free

NOMA scheme. Future work can investigate whether the proposed framework can be

generalised to other signature-based grant-free NOMA schemes. Additionally, incorpo-

rating advanced learning mechanisms, such as reinforcement or federated learning, can

enhance the AUD process. Extending the framework to non-terrestrial networks, like
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LEO satellite networks, and integrating it with physical layer security mechanisms can

address unique challenges and enhance overall system security.

5.2.2 Research Work 2

Future research should explore the extended application of the proposed authentication

scheme beyond its current context in signature-based grant-free NOMA schemes, examin-

ing its adaptability in various scenarios to understand its effectiveness in diverse wireless

communication environments. Additionally, investigating the authentication scheme’s

implementation in satellite-IoT networks presents an exciting opportunity to address

unique challenges related to vast coverage and long-distance communication, potentially

unlocking secure and efficient communication in satellite-based IoT applications. To en-

sure real-world viability, a comprehensive security analysis is crucial, covering a wide

range of potential attacks, including adversarial and resource exhaustion attacks, to

identify weaknesses and develop robust authentication solutions for IoT devices. Addi-

tionally, a formal security analysis of the authentication scheme can be carried out to

further understand its workability in different scenarios. Furthermore, scalability should

be investigated to ensure efficient authentication, even in massive-scale deployments. By

optimising the scheme without compromising security and addressing these research ar-

eas, the groundwork can be laid for secure, adaptive authentication solutions that bolster

IoT device security and seamless integration into our interconnected world.

5.2.3 Research Work 3

Future work can investigate the real-world hardware implementation and performance

testing of the proposed authentication scheme on appropriate LEO satellite IoT testbeds.

Further, future work can expand this framework to operate seamlessly across satellite

constellations. This will necessitate addressing challenges associated with inter-satellite

handovers and beam switching to ensure continuous and secure authentication. Ad-

ditionally, further research can explore integrating advanced cryptographic methods to

enhance resilience against evolving security threats and implementing machine learning

algorithms to predict and mitigate potential authentication failures in dynamic network

conditions. Furthermore, the role and characteristic of the UAV to be able to adapt its

position to impact the security performance as an illegitimate device can be considered

as future work.
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