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Abstract

This thesis focuses on the modelling, analysis and design of novel communication

strategies for wireless machine-type communication (MTC) systems to realize the

notion of Internet of things (IoT). We consider sensor based machine-type devices

(MTDs) which acquire physical information from the environment and transmit it

to a base station (BS) while satisfying application specific quality-of-service (QoS)

requirements. Due to the wireless and unattended operation, these MTDs are

mostly battery-operated and are severely energy-constrained. In addition, MTC

systems require low-latency, perpetual operation, massive-access, etc.

Motivated by these critical requirements, this thesis proposes optimal data com-

munication policies for four different network scenarios. In the first two scenarios,

each MTD transmits data on a dedicated orthogonal channel and either (i) pos-

sess an initially fully charged battery of finite capacity, or (ii) possess the ability

to harvest energy and store it in a battery of finite capacity. In the other two

scenarios, all MTDs share a single channel and are either (iii) allocated individual

non-overlapping transmission times, or (iv) randomly transmit data on predefined

time slots. The proposed novel techniques and insights gained from this thesis aim

to better utilize the limited energy resources of MTDs in order to effectively serve

the future wireless networks.

Firstly, we consider a sensor based MTD communicates with a BS, and devise

optimal data compression and transmission policies with an objective to prolong

the device-lifetime. We formulate joint optimization problems aiming to maximize

the device-lifetime whilst satisfying the delay and bit-error-rate constraints. Our

results show significant improvement (that ranges from 90% to 2000%) in device-

lifetime. Importantly, the gain is most profound in the low latency regime.

Secondly, we consider a sensor based MTD that is served by a hybrid BS which
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wirelessly transfers power to the device and receives data transmission from the

device. The MTD employs data compression in order to reduce the energy cost

of data transmission. Thus, we propose to jointly optimize the harvesting-time,

compression and transmission design, to minimize the energy cost of the system

under given delay constraint. The proposed scheme reduces energy consumption

up to 19% when data compression is employed.

Thirdly, we consider multiple MTDs transmit data to a BS following the time di-

vision multiple access (TDMA). Conventionally, the energy-efficiency performance

in TDMA is optimized through multi-user scheduling, i.e., changing the transmis-

sion time allocated to different devices. In such a system, the sequence of devices

for transmission, i.e., who transmits first and who transmits second, etc., does not

have any impact on the energy-efficiency. We consider that data compression is

performed before transmission. We jointly optimize both multi-user sequencing

and scheduling along with the compression and transmission rate. Our results

show that multi-user sequence optimization achieves up to 45% improvement in

the energy efficiency at MTDs.

Lastly, we consider contention resolution diversity slotted ALOHA (CRDSA)

with transmit power diversity where each packet copy from a device is transmitted

at a randomly selected power level. It results in inter-slot received power diversity,

which is exploited by employing a signal-to-interference-plus-noise ratio (SINR)

based successive interference cancellation (SIC) receiver. We propose a message

passing algorithm to model the SIC decoding and formulate an optimization prob-

lem to determine the optimal transmit power distribution subject to energy con-

straints. We show that the proposed strategy provides up to 88% system load

performance improvement for massive-MTC systems.
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Chapter 1

Introduction

1.1 Background

Radio communication has greatly influenced the way humans remotely communi-

cate with each other, specifically using the wide-spread mobile networks. The first

and second generation of wireless cellular networks were designed for human-to-

human voice over radio communication using the hand-held devices [1]. However,

the advancement of hardware capabilities of the mobile phones and the enlarged

capacity of wireless networks allowed data communication over the Internet. The

ever-increasing services and applications offered by the Internet have explosively

widened the span of the global inter-network. Currently, more than 4 billion peo-

ple around the globe are connected to the Internet [2] for communication (emails,

social networks, chatrooms, blogs, forums, etc.), leisure and entertainment (games,

books, music, videos, shopping, etc.), sharing knowledge (education, geographi-

cal information, encyclopedias, etc.), among others services. Consequently, the

human-type communication (HTC) is now extremely diverse and dominated by

non-audio data communication.

In parallel to the evolution of HTC, the advancements in low-cost and tiny

network devices manufacturing has enabled machine-type communications (MTC),

wherein the devices are programmed to autonomously exchange certain type of data

with one another and/or to a centralized entity over a communication medium

[3, 4]. For ease of deployment, especially when the number of devices is large,
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2 Introduction

the devices are equipped with radios to achieve wireless communication [3, 5, 6].

The MTC has a great potential in realizing an immense range of applications

and services. The potential use-cases and applications of MTC systems are wide-

spread across various industries including logistics, process automation, healthcare,

manufacturing, energy, utilities, etc.

The integration of sensing capability into machine-type devices (MTDs) gave

birth to wireless sensor network (WSN) wherein the multiple tiny devices au-

tonomously acquire some physical information from the environment and transmit

it over a wireless channel to a central data fusion station [7]. The MTC systems

were further revolutionised when the MTDs were equipped with Internet protocol

(IP) communication stack allowing them to communicate over the Internet. MTDs

equipped with the capability to observe and/or interact with physical environment

and the ability to communicate with other things, are extending the Internet to-

wards the so called Internet of things (IoT) [8–10].

IoT has the potential to significantly influence our lives and the way we interact

with the devices such as sensors, actuators, mobile phones, home automation de-

vices, smart grid devices, etc. [11,12]. It has promoted concepts of flexible designs,

visions and enormous applications, some of them are depicted in [13–15]. Currently,

more than 10 billions IoT devices are connected to the Internet through the cellu-

lar network connections [16]. For individual users, IoT brings useful applications

in home automation, security, automated devices monitoring and management of

daily tasks. For professionals, automated applications provide useful contextual

information frequently to help on their works and decision making. For industrial-

ists, Internet enabled sensors and actuators operations can be rapid, efficient and

more economical. Managers who need to keep eye on many things can automate

tasks by connecting digital and physical objects together.

The HTC can be characterized by the high rate downlink data communication

in active periods. However, MTC applications have diverse traffic patterns mostly

composed of small and infrequent packet transmissions from a large number of

devices in the uplink. The MTC devices are also different from HTC devices as

the former are low-cost devices that possess limited computational and/or power

resources. Thus, MTC raise different technical challenges and demand application

specific service requirements in terms of delay, per-link and total bit rate, reliabil-
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ity, energy consumption, and security/privacy [17, 18]. Various organizations have

launched the standardization activities on MTC supported by cellular mobile net-

works, particularly the third generation partnership project (3GPP) [17] and the

european telecommunications standards institute (ETSI) [19]. The 3GPP stan-

dard is more focused on the MTC support by the wireless cellular networks, i.e.,

UMTS (universal mobile telecommunications system) and LTE (long term evolu-

tion) core networks, and identification of the use-cases and the associated research

challenges. On the other hand, the ETSI addresses the MTC service architecture

that comprises of three main parts: devices domain, network domain and applica-

tion domain.

The MTDs can employ different existing wireless technologies to communicate

among each other depending upon the application and environmental context. For

short range or non-proprietary systems the wireless technologies such as IEEE

802.11x (WiFi) [20], IEEE 802.15.4 (ZigBee) [21], IEEE 802.15.1 (Bluetooth) [22],

etc., can effectively provide point-to-point and multi-hop wireless communication

in ad hoc, sensor, and mesh networks based vehicular, local, personal, body area

networks. These technologies operate in the unlicensed frequency band usually at

2.4 GHz and 5 GHz. Therein, multiple MTDs share a single or multiple physical

channels to transmit sensed data randomly or periodically to a specific receiver

device which is usually is the same for all MTDs. However, these solutions are

used for scenarios where reliability and interference is not crucial.

For commercialization and standardized operation of proprietary IoT services

and applications, the cellular mobile networks are proposed for MTC [3, 4]. Ac-

cording to the 3GPP standard specifications, the MTDs can directly communicate

to a base station (e.g., eNodeBs) or its data traffic can be relayed through gate-

ways. For direct communication the MTDs need to have a cellular radio interface.

Otherwise, the MTDs can form a capillary network and the gateway device can

exchange data traffic between the capillary and cellular networks [23]. The data

transmission is performed using the radio resources which are divided into multiple

uplink and downlink channels. The cellular networks provide high level of security,

reliability, mobility, and enhanced coverage for wide-area and massive MTC sys-

tems (that are composed of over 10 times more MTDs than the current number of

cellular devices [3]).
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1.2 Challenges and Requirements for MTC

The sensor based MTDs within an IoT system, are supposed to acquire information

from the environment and transmit it to the intended destination while satisfying

stringent technical quality of service (QoS) requirements in terms of maximal en-

ergy efficiency, ultra-low latency, and application specific rigorous data reliability.

This calls for novel solutions to realize wireless connectivity across heterogeneous

and autonomous wireless MTDs such as sensors, actuators, etc., [3, 5].

The use-cases of MTC systems have highly diverse properties and QoS require-

ments which depend on the context of the application and environmental dynamics.

Different use-cases of the MTC systems can be classified based on the following ma-

jor challenges and requirements:

• Deployment diversity : Zero to high mobility, fixed or arbitrary device loca-

tions, sparse to highly dense network.

• Traffic heterogeneity : Periodic, event-driven, real-time, continuous, on de-

mand, critical uplink and/or downlink communication, heterogeneous data

packet size, delay tolerant/intolerant, diverse reliability conditions.

• Energy constraint : High energy efficiency, low consumption rate, small and

limited battery capacity, efficient energy-harvesting mechanisms for perpetual

operation.

• Operational efficiency : Low protocol overhead, duty cycling pattern, deep

sleep mode scheduling, timely resource allocation for delay intolerant trans-

mission, different level coordination among MTDs.

The MTC systems can be divided into two classes: ultra-reliable MTC (uMTC)

and massive MTC (mMTC) [24, 25]. The uMTC systems are designed for the

industrial control use-cases, vehicle-to-X (V2X) communications, self-car driving,

argument reality, remote surgery, etc. The network service requirements of uMTC

systems are stringent latency and reliability. In contrast, the mMTC systems

provide wireless access to a large number of devices. Mostly, the MTDs in a

mMTC system are low-complexity and low-cost wireless devices covering a wide
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area with/without indoor communication. Typical mMTC systems have their use-

cases in the smart cities (parking waste management, street lighting), building

(smoke detectors, alarms, automation), environment (flood, water, noise, air), and

utilities (smart metering, grid management), etc.

One the most crucial requirements and challenges listed above for MTC systems

is the energy constraint. Due to their wireless and unattended operation, MTDs

are mostly battery operated and thus severely energy-constrained. Since the num-

ber of MTDs in the network is typically very large which makes the replacement of

batteries extremely hard. The energy-efficient operation of these devices is there-

fore of pivotal importance and is a critical requirement [26]. Specifically, wireless

communication is one of the most energy-intensive operations run by the MTDs

and this calls for effective wireless solutions to prolong the operational lifespan of

these constrained devices [26]. Also, the data transmission in MTC systems, unlike

HTC systems, typically takes place in the uplink, i.e., from multiple MTDs towards

the core network.

In this thesis, we consider various network scenarios of the MTC systems which

depict different MTC use-cases and thus differ in terms of the major requirements

and challenges. In particular, our overall objective is to minimize the energy cost

of the MTDs. The considered network scenarios constitute a fairly generic MTC

system setting. In this regard, the design policies proposed and the insights and

observations given in this thesis provide novel wireless solutions for a wide range

of MTC use-cases and applications.

1.3 Network Scenarios and Design Challenges

In the following, we consider four different network scenarios and identify the asso-

ciated research challenges. A simple representation of these scenarios is illustrated

in the Fig. 1.1. As mentioned before, our objective is to consider generic network

settings which cover various use-cases and applications scenarios with requirements

and challenges identified in previous sub-section.

In the first two scenarios, each MTD transmits data on a dedicated orthogonal

channel and either (i) possess an initially fully charged battery of finite capacity, or

(ii) possess the ability to harvest energy and store it in a battery of finite capacity.
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Figure 1.1: Considered network scenarios: (i) dedicated channels for each user, (ii)
users have radio-frequency (RF) energy harvesting capability, (iii) single channel
shared sequentially by users, and (iv) single channel shared randomly by users.

In the other two scenarios, all MTDs share a single channel and are either (iii)

allocated individual non-overlapping transmission times, or (iv) randomly transmit

data on predefined time slots.

The first network scenario is applicable to a multi-user multi-channel sparse

MTC system. In such a system, each MTD is assigned a channel and transmits

data on the dedicated channel. The data may be generated or sensed by the MTD

periodically, real-time, on demand (i.e., only when requested by the receiver), or

due to the occurrence of an event of interest, that is to be delivered subject to the

given reliability and delay conditions. Moreover, the MTDs are battery powered

and perform duty cycling to switch off radio and may also go to deep sleep by

occasionally powering off the micro controller unit (MCU). This network scenario

covers high reliability and low-latency MTC systems such as low-power wireless

multimedia sensor networks (WMSNs) for audio/video surveillance [27], WSNs-
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based monitory of heterogeneous data-traffic [7], etc. For this network scenario,

designing a generic single-user communication policy would suffice and the same

policy can be employed by all other users for the individual system parameters.

The second network scenario is evolved from the first scenario and considers an

important aspect of energy-harvesting for a multi-user multi-channel sparse MTC

system. Each MTD is battery powered, which is recharged by an energy-harvesting

source for perpetual operation. This network scenario covers loss tolerant and high

reliability demanding MTC systems such as low-power environmental monitoring

WSNs [7], telemetry, personal and body area network MTC applications [28], etc.

As before, designing a generic single-user communication policy would suffice for

this network scenario.

The third network scenario is applicable to a multi-user single-channel sparse

or massive MTC system. In such a system, all MTDs share a single channel

and sequentially transmit data on this channel for interference free transmission.

The data may be generated or sensed by the MTD periodically or due to the

occurrence of an event of interest that is to be delivered under given reliability

and delay conditions. Moreover, the MTDs are battery powered and perform duty

cycling and deep sleep operation. This network scenario covers high reliability and

low-latency MTC systems such as automotive networks FlexRay [29], mmWave

based application of 5G networks [30], low-power WSNs and WMSNs, etc. For

this network scenario, the communication policies for all MTDs need to be jointly

devised for given system parameters.

The fourth network scenario is evolved from the third scenario. However, due

to a lack of coordination among devices, the MTDs randomly transmit short data-

packets on a shared channel. This network scenario covers highly reliability and

dense MTC systems such as massive WSNs [31], smart cities lighting system, smart

parking systems, etc. For this network scenario, the communication policies for all

MTDs need to be jointly devised for given system parameters.

1.3.1 Single-User With Limited Battery Capacity

The lifetime of MTC device is defined as the time taken by the device to deplete all

of its energy stored in the battery of limited capacity. For battery powered MTDs,
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which are severely energy constrained, prolonging the lifetime is of paramount

importance [26]. In the existing literature, the lifetime maximization problem has

been approached from different perspectives such as green channel access, sleep-

wake scheduling, coverage, efficient routing, network coding, data aggregation, see

[26] and the references therein.

We consider a monitoring system, in which an energy constrained sensor MTD

acquires some physical information from its vicinity, applies data compression on

the sensed data, and transmits the compressed data to the sink node. The com-

pression is employed to alleviate the transmission energy cost. However, applying

too much compression leads to substantial energy cost. Therefore, the compression

and transmission needs to be jointly optimized. Prior studies only considered the

optimization of transmission policy without compression. We consider that the

sink node may be able to feedback perfect or imperfect channel information to the

sensor MTD. The objective is to maximize MTD’s lifetime subject to the given

QoS requirements in terms of data reliability.

Design Challenge: Jointly optimize the compression and transmission policy

to maximize the MTD’s lifetime subject to given QoS requirements when channel

knowledge may or may not be available at the MTD.

1.3.2 Single-User With Energy Harvesting Capability

The limited operational time of battery operated MTDs is a major hurdle in re-

alizing networks demanding long-term operation [3]. Radio frequency based en-

ergy harvesting (RF-EH) has recently emerged as a promising solution to provide

perpetual-lifetime for MTC nodes [32–34], i.e., it may stay operational indefinitely

long. Therein, the MTD is dependent on a harvesting access point (HAP) which

transfers the energy to the MTD through a powerful RF signal. The MTD receives

this signal and harvests the energy and stores it in a battery. This energy can later

be used for data sensing and transmission.

We consider a unified wireless power transfer (WPT) and wireless information

transfer (WIT) system. The objective is to minimize the energy cost of the system.

The MTD solely relies on the harvested energy transferred by the HAP. Thus, the

aforementioned objective can be achieved by minimizing the HAP’s transmitted
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energy. We seek to intelligently design the operation of the MTD and the HAP.

Design Challenge: Jointly optimize the RF energy harvesting, compression

and transmission policies to minimize the power transferred by the HAP subject

to given QoS requirements.

1.3.3 Multi-User Sequential Channel Access

The wireless MTDs within an IoT system usually share a single uplink channel.

Therein, each device first contends for channel resources and then transmits data to

a central station, while satisfying stringent QoS requirements in terms of applica-

tion specific reliability and delay. In addition, different levels of fairness among the

devices are considered while minimizing the energy cost of all MTDs (i.e., system

energy cost).

The time division multiple access (TDMA) channel access mechanism allows

deterministic scheduling for data transmission and other device operations. In pre-

vious works, TDMA is preferred for sensor networks [35], [36], wireless powered

communication networks [37], and many other network technologies. In this chap-

ter, the TDMA protocol is employed for the uplink MTC and we jointly determine

the schedule for data transmission and compression operations for MTDs.

The performance of the TDMA protocol is enhanced by exploiting the multi-

user diversity which occurs due to the difference in the signal power attenuation

conditions of different devices. This performance enhancement is achieved by opti-

mizing the multi-user scheduling, i.e., by changing the transmission time allocated

to different devices within a frame, whilst maximizing a certain system objective

such as energy efficiency, throughput. For example, a device allocated with a rel-

atively longer transmission time can adapt the transmission rate for given channel

gain, to achieve better energy efficiency and vice versa. Accordingly, in a TDMA-

based system, the time allocated to different MTDs is adapted to achieve a given

system objective and the devices transmit data successively in a fixed order. In

such a system, the sequence of devices for transmission, i.e., who transmits first

and who transmits second, etc., has not been considered as it does not have any

impact on the energy efficiency. We consider that data compression is performed

before transmission and show that the multi-user sequencing is indeed important.
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Design Challenge: Jointly optimize the multi-user sequencing and scheduling

along with compression and transmission policies to minimize the energy cost of

MTDs subject to given QoS requirements.

1.3.4 Multi-User Random Channel Access

A vital requirement in enabling mMTC systems in next generation wireless net-

works is efficient access mechanisms [38]. In this regard, random access schemes are

preferred over demand based schemes due to their low latency and lesser signalling

to enable communication between massive uncoordinated mMTC devices [38]. One

such random access mechanism is contention resolution diversity slotted ALOHA

(CRDSA) [39] which is a combination of diversity slotted ALOHA (DSA) and suc-

cessive interference cancellation (SIC). In CRDSA mechanism, a device transmits

multiple copies (bursts) of the packet on randomly selected slots. On the receiver

side, first the interference free bursts are iteratively recovered and then their copies

are removed from replica slots using SIC to allow recovery of new packets. CRDSA

is based on the clean packet model in which only interference-free packets are re-

coverable.

Recently, efforts have been made to improve the performance of CRDSA by

enhancing and exploiting the capture effect [40], i.e., a packet is recoverable if its

signal-to-interference-plus-noise ratio (SINR) is above a predefined threshold. The

randomness in the channel gain can provide gain to the capture effect. This can

be further enhanced by employing the transmit power diversity. We consider that

multiple MTDs employed DSA scheme to transmit data packets. At the transmitter

side, multiple bursts are transmitted on randomly selected slots. The number of

the burst repetition is selected from a probability distribution. Moreover, each of

these bursts are transmitted on randomly selected transmit power levels selected

from a given probability distribution. At the receiver side, the bursts are iteratively

resolved using SINR metric and SIC approach. The objective is to recover as many

unique data packets as possible.

Design Challenge: Optimize the transmit power level distribution for the

MTDs to maximize the system load subject to degree of repetition and energy

constraint.
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1.4 Literature Review

In the following subsections, we discuss the prior works related to our considered

network scenarios and identified design challenges.

1.4.1 Single-User With Limited Battery Capacity

The low-cost and miniature sized cameras and microphones have made it possible to

acquire multimedia information, i.e., image, audio, and video, from the environment

enabling the notion of WMSN [41] and Internet of multimedia things (IoMT) [27].

In most of the applications of WMSN and IoMT, the amount of sensed data (raw

data) can be very large, resulting in high transmission cost. In this regard, data

compression schemes have been proposed [42–45], which decrease the amount of

data to be transmitted and thus alleviate the transmission energy cost. Typically,

the energy cost of compression and transmission is around 15% and 80% of the

total energy consumed by the sensor node, respectively [46, 47]. The transmission

cost depends upon the required transmission rate and the signal strength. Unlike

the transmission energy cost which linearly increases with the size of data to be

transmitted, the compression energy cost has a non-linear relationship with the

compression ratio [48]. Owing to this non-linearity, blindly applying too much

compression may even exceed the cost of transmitting raw data, thereby losing its

purpose [49].

From the compressive sensing perspective, [50] considered a wireless powered

cognitive radio network and optimized the time slot allocation for energy har-

vesting, sensing, and transmission processes. By using compressive sensing, less

number of samples are collected which reduces the sensing cost as well as the data

transmission cost. The reader is referred to [51] for an overview of related works on

compression and transmission frame design using compressive sensing in wireless

sensor networks.

Prior works on power-rate adaptation [52–56], which do not employ data com-

pression, have considered transmission energy as a monotonically increasing func-

tion of the transmission rate. Therefore, these schemes propose to transmit data at

lower transmission rates under given delay constraint to achieve energy efficiency.
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These schemes assume the distance between communicating devices is large, thus

the transmit power dominates the circuit power [57,58]. However, in many practical

sensor networks, e.g., body area networks, the distance is fairly small and the cir-

cuit power cost cannot be ignored. In this regard, considering the power amplifier

cost as a function of the constellation size and transmit power, the transmission en-

ergy is not anymore a monotonically increasing function of the transmission rate, as

shown in [57]. This is the case particularly for smaller constellation sizes, which are

more common in sensor networks. Therefore, simply decreasing the transmission

rate may not necessarily improve energy efficiency.

To the best of our knowledge, none of the prior works has jointly considered

and optimized data compression and transmission rate.

1.4.2 Single-User With Energy Harvesting Capability

The prior studies have considered the unified WPT and WIT systems from the

perspective of RF-EH efficiency [34, 59–61]. The RF-EH is mainly dependent on

aspects such as the transmitted power, wireless medium, rectification efficiency, etc.

Firstly, the HAP’s transmitted power undergoes attenuation due to the fading and

pathloss, afterwards the RF-EH circuit’s sensitivity threshold (−10 to −30 dBm

[34]) further cuts down the received power, and lastly the RF energy transducer

harvests energy with a limited efficiency (< 50% [62]). Consequently, even for a

short distance, the HAP spends a substantial amount of energy on WPT process.

Therefore, the energy cost of the HAP is an important component to consider for

efficient operation of a RF-EH based communication system.

To achieve energy minimization at the HAP, it is critical to minimize the WIT

energy cost/requirement to perform its operation subject to the system constraints.

The existing literature proposes the power-rate adaptation [59–61,63–65] to mini-

mize the transmission energy cost under the given delay constraint. This approach

is only valid when the distance is large and thus the transmit power dominates the

circuit power [60,61]. For practical RF-EH based system, the distance is very short

and thus the circuit power cost cannot be ignored. Thus, decreasing the transmis-

sion rate may prolong the transmission time but may not necessarily decrease the

transmission energy cost.
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In chapter 2, we propose using data compression to minimize the transmission

energy cost by reducing the amount of data to transmit. It is shown that jointly

optimizing transmission and compression in a traditional non-EH communication

system minimized energy consumption significantly (typically over 90%) as com-

pared to optimizing transmission only without compression. Motivated by this

potential of data compression to reduce the energy cost, we consider this technique

for a wireless powered communication system. In such systems, the time spent on

compression (which itself consumes energy [42,45,49]) must be carefully controlled.

To the best of our knowledge, none of the prior works has considered the im-

pact of data compression while devising the WPT and WIT policies for a wireless

powered MTC system.

1.4.3 Multi-User Sequential Channel Access

The TDMA protocol is employed for the uplink MTC in various prior works and its

performance is only optimized by controlling the time allocated to different MTC

devices, i.e., the length of the allocated transmission blocks. For a wireless power

transfer scenario, the multi-user scheduling is optimized for sum and max-min

energy minimization objectives for TDMA and NOMA in [37] and [66], respec-

tively. Similarly, the proportional-fairness objective is considered in [67] and [68]

to balance between multi-user fairness and energy minimization for NOMA and

TDMA, respectively. An optimal strategy is devised for TDMA in [35] to balance

between sum throughput and energy through multi-user scheduling. In that, the

data transmission activity is controlled based on the available energy at the indi-

vidual devices. For a TDMA system, in [69] the multi-user scheduling is optimized

and the sum throughput is maximized for energy harvesting devices subject to a

total time constraint. The system energy efficiency is maximized in [70] for TDMA

systems by jointly optimizing the multi-user scheduling and transmit power subject

to individual QoS requirements. To the best of our knowledge, none of the above

papers investigates multi-user sequencing.

In chapter 2, we consider a system model that is composed of a single user

only where the compression and transmission rates for this individual user are

jointly optimized to maximize its lifetime. For a multi-user TDMA scenario where



14 Introduction

all the users share a single channel and transmit one after the other. In such a

system, the compression time allowed for each user is different (unlike the system

model considered in [71]). As a result, the multi-user sequencing and scheduling

are tightly coupled with the design of compression and transmission for each user.

The policy design in [71], which did not account for such an important property in

a multiuser setting, is not applicable to the TDMA-based system model considered

in this chapter.

To the best of our knowledge, none of the prior works has considered the impact

of sequence of devices for transmission, i.e., who transmits first and who transmits

second, etc., as it has no significance when compression is not employed, given the

channel statistics do not change from one transmission block to the other.

1.4.4 Multi-User Random Channel Access

Motivated by the critical need to better support MTC in future wireless net-

works [3], the SIC based DSA schemes such as CRDSA [39], irregular repetition

slotted ALOHA (IRSA) [72], and other variants of CRDSA [40, 73–75], have sig-

nificantly improved the throughput of slotted ALOHA. The normalized through-

put, defined as the number of useful packets received per slot, is around 0.37 for

basic DSA, which is improved to 0.52 and 0.965 by CRDSA and IRSA, respec-

tively [39] [72]. It is shown in [72] that iterative burst recovery approach is analo-

gous to bipartite graph theory, which can be used to represent iterative decoding

of error correcting codes on graphs and analyze message passing based decoding.

This approach is used in [72] to analyze the iterative interference cancellation (IC)

convergence performance of CRDSA scheme. Therein, the bipartite graph can be

optimized, using the tools from error correcting codes like the AND-OR tree anal-

ysis [76], to find the optimal degree distribution of burst repetition which gives the

maximum achievable load.

Most DSA schemes employ clean packet model in which only interference free

packets are recoverable and the collisions are considered destructive. However, the

receiver can also exploit the power unbalance between the colliding packets and

possibly recover one or more packets, if the SINR is above a predefined threshold.

This technique is called the capture effect. Previously, the SINR models were



1.5 Thesis Overview and Contributions 15

applied to single packet transmission models their physical interference is minimized

by controlling the access probabilities of the participating nodes [77–79], among

others. A SINR metric for DSA considering same received power for each device

at the receiver is proposed in [80]. Similarly, the approaches employing multiple

transmit power levels and the associated probability distribution are also focused

on single packet model for pure DSA only [76,81].

While the idea of transmit power diversity is common in wireless communica-

tions [82], to the best of our knowledge, no analytical framework has been pro-

posed in the literature to date to analyse the impact of transmit power diversity

on CRDSA.

1.5 Thesis Overview and Contributions

This thesis proposes optimal data communication policies for four different network

scenarios. Figure 1.2 shows an overview of the thesis.

In this regard, the device-lifetime maximization problem is considered in Chap-

ter 2. The system energy minimization problem for a wireless power transfer com-

munication system is considered in Chapter 3. Chapter 4 considers the multi-user

sequencing and scheduling optimization problem. Chapter 5 considers channel ac-

cess mechanism that is suited for massive-channel access networks.

The chapter-wise summary of the contributions by this thesis is given as follows:

Chapter 2 −− Single-User Compression and Transmission Rate Con-

trol for Device-Lifetime Maximization

This chapter presents solution to the design challenge posed in Section 1.3.1.

Existing adaptive transmission rate control schemes attempt to prolong node-

lifetime without considering data compression. In this chapter, our focus is to

devise joint data compression-transmission policies to optimally utilize the energy

resources to maximize the lifetime of an energy constrained sensor based MTC

device. We consider a monitoring system, in which an energy constrained sensor

node acquires some physical information from its vicinity, applies data compres-

sion on the sensed data, and transmits the compressed data to the sink node. The

sink node may be able to feedback perfect or imperfect channel information to

the sensor node, depending upon the considered scenario. Accordingly, the sensor
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Figure 1.2: Overview of the thesis.

node devises an optimal compression and transmission policy based on the available

channel information with an objective to maximize its lifetime. To the best of our

knowledge, this is the first work in which the data compression and transmission

are jointly designed and optimized. In contrast, prior studies only considered the

optimization of transmission policy without compression. As shown in this chap-

ter, the joint optimization of compression and transmission results in a substantial

improvement in the lifetime of the sensor node. To this end, we consider three

scenarios which differ in terms of the available channel information at the sensor

node. The first scenario assumes the availability of the perfect instantaneous chan-

nel gain information at the sensor node and provides the benchmark theoretical

performance. The remaining two scenarios assume the availability of the quan-

tized channel gain and the statistical channel gain information, respectively, at the

sensor node and provide the performance of practical sensor based wireless MTC

systems.

Our investigation leads to the following observations and design guidelines:
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• Our results show that a jointly optimized compression-transmission policy

performs much better than optimizing transmission only without compression

under any given BER and delay constraints. The performance gain observed

ranges from 90% to 2000% and is most profound when the delay constraint

is stringent.

• The optimal level of compression is insensitive to the change in the BER

requirement. However, the optimal transmission rate increases as BER con-

straint gets less stringent.

• The best strategy is to reduce compression and increase the transmission rate

when the delay constraint gets more stringent and vice versa. The optimal

level of compression and transmission rate are more sensitive to the delay

constraint when the system requires low latency, while they remain roughly

unchanged when the delay constraint is relaxed beyond a certain point.

The results of this chapter have been presented in the following publications

[71,83]:

J2. S. A. Alvi, X. Zhou, and S. Durrani, “Optimal Compression and Transmis-

sion Rate Control for Node-Lifetime Maximization,” IEEE Trans. Wireless

Commun., vol. 17, no. 11, pp. 7774-7788, Nov. 2018.

C3. S. A. Alvi, X. Zhou, and S. Durrani, “A Lifetime Maximization Scheme for

a Sensor Based MTC Device ,” in Proc. IEEE GLOBECOM, Abu Dhabi,

UAE, Dec. 2018.

Chapter 3 −− Single-User Compression and Transmission Rate Con-

trol for Wireless Powered Machine-Type Communication

This chapter presents solution to the design challenge posed in Section 1.3.2.

In this chapter, the problem that we study is to minimize the energy cost of

the system. The target is to optimally utilize the power injected into the system.

The MTC node solely relies on the power transferred by the HAP. Thus, the afore-

mentioned objective can be achieved by minimizing the HAP’s transmitted energy

while satisfying the given system constraints. Therefore, we design policies for the
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RF energy harvesting, compression and transmission processes whilst guaranteeing

the desired QoS requirements.

In this chapter, we consider a wireless powered MTC system comprising of a

MTC node and a HAP. We employ a harvest-and-use strategy, i.e., the HAP first

transfers RF power to the MTC node, which then transmits its data to the HAP.

Our investigation leads to the following contributions and observations:

• We propose to jointly optimize energy harvesting, compression and transmis-

sion times to minimize the energy cost of the system, which is injected by

the HAP, when only statistical gain is known at the MTC node.

• Our results show that, for practical parameter values, employing and optimiz-

ing data compression in a wireless powered MTC system reduces the energy

consumption by a further 19%, compared to only optimizing harvesting and

transmission times. Specifically, the energy saving is significant when the

delay constraint is less stringent.

• Our results also provide additional insights into the feasibility and actual

operation of a wireless powered MTC node. For practical parameter values,

the optimized time spent on sensing, compression and transmission is small

and the majority of the optimized time is spent on power transfer operation.

The results of this chapter have been presented in the following publication [84]:

C2. S. A. Alvi, X. Zhou, and S. Durrani, “Wireless Powered Machine-Type Com-

munication: Energy Minimization via Compressed Transmission,” in Proc.

IEEE PIMRC, Istanbul, Turkey, Sep. 2019.

Chapter 4 −− Multi-User Sequencing and Scheduling Control for

Time-Division Multiple Access Systems

This chapter presents solution to the design challenge posed in Section 1.3.3.

We consider a single-channel multi-user uplink MTC communication system,

in which multiple energy-constrained MTC devices transmit data to a base station

(BS) within a fixed period of time, referred to as a frame, following the TDMA

protocol. The BS allocates non-overlapping frame segments, referred to as trans-

mission blocks, to individual MTC devices. Each MTC device transmits data to
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the BS within its allocated transmission block. We consider that the devices apply

data compression before the start of their scheduled transmission block and trans-

mit the compressed data in the allocated transmission block. The main novelty of

this work lies in the proposed multi-user sequencing, i.e., the order in which the

devices are scheduled for transmission in the TDMA protocol.

In prior works, the TDMA performance is only optimized by controlling the

time allocated to different MTC devices, i.e., the length of the allocated trans-

mission blocks. In particular, the sequence of devices for transmission, i.e., who

transmits first and who transmits second, etc., has no significance, given the chan-

nel statistics do not change from one transmission block to the other. However,

in our proposed system the sequence of allocating the devices to the transmission

blocks affects the amount of time allowed for applying data compression. As such,

the energy-minimization objective can be achieved by allocating MTC devices with

an optimized sequence and schedule of the transmission blocks.

To this end, we propose an optimal multi-user sequencing and scheduling scheme,

and a sub-optimal multi-user scheduling scheme which does not employ multi-user

sequencing. A comparative performance analysis of the two proposed schemes is

carried out. Our investigation leads to the following observations and design in-

sights:

• Our results show that the proposed optimal scheme outperforms the schemes

without multi-user sequencing. The improvement due to multi-user sequence

optimization is up to 35% − 45% depending on whether the length of the

transmission blocks can be optimized or not.

• The energy efficiency gain of multi-user sequencing is most significant when

the delay bound is stringent. In addition, multi-user sequence optimization

makes the TDMA-based multi-user transmissions more likely to be feasible

in the lower latency regime subject to the given power constraints.

• To solve the challenging mixed-integer nonlinear program for the proposed

optimal scheme, we propose transformations to arrive at an approximate

convex program which can be solved with significantly lower complexity. To

solve this approximate program, we develop an algorithm that iteratively

converges to a Fritz John solution.
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The results of this chapter have been accepted/submitted in the following venues

[85,86]:

J1. S. A. Alvi, X. Zhou, S. Durrani, and D. T. Ngo, “Sequencing and Scheduling

for Multi-User Machine-Type Communication,” IEEE Trans. Commun., vol.

68, no. 4, pp. 2459-2473, Apr. 2020.

C1. S. A. Alvi, X. Zhou, S. Durrani, and D. T. Ngo, “Proportionally-Fair Se-

quencing and Scheduling for Machine-Type Communication,” in Proc. IEEE

ICC, Dublin, Ireland, Jun. 2020.

Chapter 5 −− Multi-User Transmit Power Diversity in Contention

Resolution Diversity Slotted ALOHA Systems

This chapter presents solution to the design challenge posed in Section 1.3.4.

In this chapter, we propose a transmit power diversity based DSA scheme that

exploits capture effect technique along with SIC. At the transmitter side, multiple

bursts are transmitted on randomly selected slots. The number of the burst rep-

etition is selected from a probability distribution. Moreover, each of these bursts

are transmitted on randomly selected transmit power levels selected from a given

probability distribution. At the receiver side, the bursts are iteratively resolved

using SINR metric and SIC approach.

Our investigation leads to the following contributions and observations:

• We describe the proposed system by an edge-weighted bipartite graph and de-

velop a novel graph-based message passing algorithm to perform the iterative

SIC based decoding process.

• We employ the AND-OR tree analysis to derive an expression to character-

ize the system performance. Simulation results confirm the accuracy of the

derived expression.

• We formulate and solve an optimization problem to determine the optimal

transmit power probability distribution. The results show that by maximizing

the probability of the gap between the power levels of two copies transmitted

in a given slot, the optimal transmit power distribution leads to considerable
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performance improvement. For instance, for only 2 copies per device per

frame with only 5 power levels to choose from, the proposed scheme is shown

to achieve a system load of 1.68 packets/slot, which shows its superiority to

existing SIC based diversity slotted ALOHA methods.

The results of this chapter have been presented in the following publication [87]:

J3. S. A. Alvi, S. Durrani, and X. Zhou, “Enhancing CRDSA with Transmit

Power Diversity for Machine-Type Communication,” IEEE Trans. Veh. Tech-

nol., vol. 67, no. 8, pp. 7790-7794, Aug. 2018.

Finally, Chapter 6 provides a summary of the thesis results and makes sugges-

tions for future research work.





Chapter 2

Single-User Compression and

Transmission Rate Control for

Device-Lifetime Maximization

In this chapter, we consider a network scenario that is applicable to a multi-user

multi-channel sparse machine-type communication (MTC) system. In such a sys-

tem, each machine-type device (MTD) is assigned a channel and transmit data

on dedicated. The data may be generated or sensed by the MTD periodically,

real-time, on demand, or due to the occurrence of an event of interest that is to

be delivered under given reliability and delay conditions. Moreover, the MTDs are

battery powered and perform duty cycling as well as deep sleep operation. This

network scenario cover high reliability and low-latency MTC systems. For this net-

work scenario, designing a generic single-user communication policy would suffice

and the same policy can be employed by all other users for the individual system

parameters.

Due to their wireless and unattended operation, MTC devices are mostly bat-

tery operated and are severely energy constrained. Thus, prolonging the lifetime of

these sensor based MTC devices, which is defined as the time taken by the MTC

device to deplete all of its energy, is of paramount importance [26]. In the existing

literature, the lifetime maximization problem has been approached from different

perspectives such as green channel access, sleep-wake scheduling, coverage, efficient

23
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routing, network coding, data aggregation, see [26] and the references therein.

We consider a system that is composed of an energy constrained sensor node

and a sink node, and devise optimal data compression and transmission policies

with an objective to prolong the lifetime of the sensor node. While applying com-

pression before transmission reduces the energy consumption of transmitting the

sensed data, blindly applying too much compression may even exceed the cost of

transmitting raw data, thereby losing its purpose. Hence, it is important to inves-

tigate the trade-off between data compression and transmission energy costs. In

this chapter, we study the joint optimal compression-transmission design in three

scenarios which differ in terms of the available channel information at the sensor

node, and cover a wide range of practical situations. We formulate and solve joint

optimization problems aiming to maximize the lifetime of the sensor node whilst

satisfying specific delay and bit error rate (BER) constraints.

This chapter is organized as follows. The system model is presented in Sec-

tion 2.1. The communication scenarios, which differ in the level of the channel

knowledge at the sensor node, are discussed in Section 2.2. The lifetime maximiza-

tion problems and their solutions are provided in Section 2.3. Numerical results

are presented in Section 2.4. Finally, Section 2.5 concludes the chapter.

2.1 System Model

We consider a system consisting of a sensor based MTC device (sensor node) which

is periodically transmitting its sensed data to a sink node, as illustrated in Fig. 2.1.

Both nodes are equipped with a single omnidirectional antenna. The sensor node

is battery operated and energy constrained, whereas the sink node has no energy

constraint. The system follows a block-wise operation with a block of duration T ,

as shown in Fig. 2.2. Within each time block the sensor node performs three main

functions, i.e., (i) sensing, (ii) compression, and (iii) transmission, each having

individual completion time and energy cost. The block-wise operation and the

duration of the block length depends on the sensor application. For example, in

wireless multimedia sensor networks (WMSN) and Internet of multimedia things

(IoMT) applications, the fresh data is periodically available which needs to be

transmitted within a given deadline.
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Figure 2.1: Illustration of the considered system model, comprising a sensor and a
sink node.

For energy efficient operation, we employ radio duty cycling (RDC), i.e., radio

is kept in the inactive state except during the transmission process. Moreover,

the micro-controller unit (MCU) is kept in the inactive state, when it is neither

compressing nor transmitting data, referred to as deep sleep. The transition periods

from active to inactive states and vice versa are fast enough to be negligible for

both radio and MCU. We assume the power consumed by the radio and MCU in

inactive states is negligible [46,47].

Sensing: The sensing operation is as follows. Firstly, the sensor node acquires

the required information from the physical environment and encodes it to a data of

size D bits. The sensed data during a given time block, is available for transmission

at the start of next time block. In this chapter, we make the following assumptions

regarding data sensing:

• The data sensing can be done in parallel while the compression and trans-

mission processes are being executed.

• The sensed data is always periodically available, which is in line with prior

works in this area [33,52,56,64,65,88].

• The periodic sensing to acquire a fixed amount of physical information from
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Figure 2.2: Timing diagram for compression and transmission processes and cor-
responding radio and MCU activity cycles.

the environment typically consumes a constant time and energy [89].

• The amount of data to be sensed, and the associated cost of sensing, depend

only on the application and is independent of the compression and transmis-

sion processes.

Let the time and power spent by the sensor node to sense data of size D bits

be denoted by Tsen and Psen, respectively.

Compression: Before transmission, the sensed data of size D bits is com-

pressed into Dcp bits as per the given compression ratio Dcp

D
. The compression

time, denoted by Tcp, is defined as the time required to compress raw data, D, into

compressed data, Dcp. A non-linear compression cost model is proposed in [48] to

evaluate the compression cost. This model is validated for JPEG and JPEG2000

compression algorithms in [48]. In this chapter, we adopt this non-linear model to

compute the compression time as a function of the compression ratio, Dcp

D
, as

Tcp = τD

(( D

Dcp

)β
− 1

)
, (2.1)



2.1 System Model 27

where β is the compression algorithm dependent parameter and τ is the per bit

processing time. In general, β is proportional to the compression algorithm com-

plexity and it determines the time cost for achieving a given compression ratio for

given hardware resources. β can be calculated off-line for any specified compression

algorithm and given hardware resources. τ depends upon the MCU processing re-

sources and the number of program instructions executed to process 1 bit of data.

Note that τ does not represent the compression time per bit. It can be given as

τ =
instructions

program︸ ︷︷ ︸
(i)

× clocks

instruction︸ ︷︷ ︸
(ii)

× seconds

clock︸ ︷︷ ︸
(iii)

× 1

reg︸︷︷︸
(iv)

, (2.2)

The explanation for the terms in (2.2) is as follows:

(i) We assume a single-instruction program that is able to process 1 bit of infor-

mation.

(ii) Most instructions in a typical sensor mote MCU are executed in 1 clock cycle.

We assume a single instruction is executed in 1 clock cycle.

(iii) Seconds per clock represents the clock speed, i.e., the inverse of the MCU

operational frequency which typically is between few MHz to hundreds of

MHz.

(iv) reg represents MCU register size and its value for typical sensor motes is 8-bit.

For 8-bit processor, the execution time to process 1 bit or up to 8 bits is the

same. We assume D is large (thousands of bits) and it will be processed in

chunks of 8 bits.

Let Pcp denote the power consumed by the sensor node during data compression

process. Pcp is the same as the power consumed while sensor mote’s MCU is

processing information. Its value is predefined for a given sensor mote with a given

hardware processing capability.

Transmission: Once the compression process is complete, the sensor node

needs to transmit the compressed data, Dcp, within the next T −Tcp seconds. The

sensed data needs to be compressed and transmitted within each time block, hence
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the delay constraint is T seconds. The transmission time, denoted by Ttx, depends

upon the compressed data size, Dcp, and the link transmission rate, r. We consider

the sensor node uses M -QAM modulation scheme with constellation size equal to

M = 2l, where l = 1, 2, 3, .., L. Thereby, Ttx is given as

Ttx =
Dcp

r
, (2.3)

where

r =
log2

(
M
)

Ts

, (2.4)

where Ts is the symbol period and M is the modulation constellation size.

To compute the data transmission power cost, denoted by Ptx, we adopt a prac-

tical model as given in [57]. In this model, the total power cost of the sensor node

while transmitting data, denoted by Ptx, is divided into three main components,

the transmitted power, RF power amplifier, and the communication module cir-

cuitry power, denoted by Pt, Pamp, and Po, respectively. Accordingly, Ptx is given

as follows

Ptx = Pt + Pamp + Po. (2.5)

Po is further divided into different communication circuitry modules [57]

Po = Pfil + Pmix + Psyn, (2.6)

where Pfil, Pmix, and Psyn is the power consumed by filter, mixer, and frequency

synthesizer, respectively. The Pamp is a function of transmitted power and it can

be given as [57]

Pamp =
( ε
µ
− 1
)
Pt, (2.7)

where µ represents the drain efficiency of the power amplifier [90] and ε represents

the peak-to-average ratio (PAR) which depends upon the modulation scheme and

the associated constellation size. Since, we consider M -QAM modulation, ε is given

as [57,91]

ε = 3
M

1
2 − 1

M
1
2 + 1

. (2.8)
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Substituting the value of Pamp in (2.5) and re-arranging, Ptx can be rewritten as

Ptx =
ε

µ
Pt + Po. (2.9)

We assume that the battery used for sensor node possesses a limited charge

storage capacity as well as a maximum current withdrawal limit. Therefore, instan-

taneous power demand of any process at any state should not exceed the maximum

allowable limit. Specifically, the transmission power cost, which is a function of

transmit power, needs to meet this power bound in order to ensure the feasibility

of the system for practical sensor networks.

Channel model: The sensor node is located at a distance d from the sink node.

The channel between the two nodes is composed of a large-scale path loss, with

path loss exponent α, and small-scale quasi-static flat Rayleigh fading channel,

i.e., the fading channel coefficient h remains constant over a time block and is

independently and identically distributed from one time block to the next. The

additive noise is assumed to be AWGN with zero mean and variance σ2.

The pdf of the instantaneous channel gain, |h|2, is exponentially distributed

and is given as

f
(
|h|2
)
,

1

ς
exp

(
− |h|

2

ς

)
, |h|2 > 0, (2.10)

where ς represents the scale parameter of the probability distribution.

Node-Lifetime: We assume that the sensor node’s battery is initially fully

charged. Based on the battery capacity, operating voltage, and rate of energy

consumption, we can calculate the node-lifetime, denoted by TNL, which is defined

as the time taken by the node to deplete all of its battery energy. The node-lifetime,

TNL, can be given as

TNL =
BcapVop

Pavg

, (2.11)

where Bcap represents the battery capacity that is a measure of the charge stored

by the battery, Vop is the operating voltage, and Pavg represents the average power

consumption by the sensing, compression, and transmission processes and is given

as

Pavg =
TsenPsen + E

[
Ψ
]

T
, (2.12)
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where E[·] is the expectation operator and Ψ is the energy consumed by the com-

pression and transmission processes in a given time block which is given as

Ψ = TcpPcp + TtxPtx. (2.13)

Note that the compression and transmission energy costs may change from one

time block to the next. However, the sensing energy cost, TsenPsen, is the same for

each time block.

2.2 Communication Scenarios and Channel Knowl-

edge

The level of channel information available at the sensor node changes the com-

pression and transmission policy design, since it imposes different constraints on

the system which needs to comply with the channel knowledge. We consider three

scenarios serving different important purposes. The perfect instantaneous channel

gain information (CGI) (Scenario 1) is commonly used for theoretical performance

analysis as a benchmark in wireless sensor networks. In reality when a feedback

link with limited bandwidth is available then a quantized (imperfect) CGI knowl-

edge is shared (Scenario 2). Finally, when the feedback link is not available, then

the sensor node relies on the statistical channel information (Scenario 3). The

considered scenarios are summarized as follows:

Scenario 1: Perfect CGI is available at the sensor node, when perfect feedback

is available.

Scenario 2: Imperfect CGI is available at the sensor node, when limited feedback

is available.

Scenario 3: Statistical CGI is available at the sensor node, when there is no

feedback.

Note that the instantaneous CGI is assumed to be known at the sink node,

which is a reasonable assumption when the sink node has no constraint on energy

and data processing capability [92].
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2.2.1 Instantaneous CGI Available at the Sensor Device

The sensor node is able to adaptively control the compression and transmission

rate if the instantaneous CGI is available. Therein, we consider the following two

scenarios.

Scenario 1 : In this scenario, perfect instantaneous CGI is available at the sensor

node. Therein, at the start of each time block, the sink node perfectly estimates the

instantaneous fading channel coefficient and computes the CGI, |h|2. The sink node

then feeds back this CGI to the sensor node perfectly. Hence, perfect knowledge of

instantaneous CGI is available at the sensor node.

Scenario 2 : In this scenario, imperfect instantaneous CGI is available at the

sensor node. Therein, at the start of each time block, the sink node perfectly

estimates the instantaneous fading channel coefficient and computes the CGI, |h|2.

Moreover, the sink node is required to quantize the CGI to bound the feedback

overhead, since in practical systems only limited feedback is available. Note, the

CGI is a real and positive value which allows efficient quantization using a small

number of bits [93]. The quantization of the CGI at the sink node, due to limited

feedback, results in channel uncertainty at the sensor node side. We assume a

perfect feedback link, hence CGI available at the sensor node is only subject to

imperfection due to the quantization process.

The actual instantaneous CGI, |h|2, can fall anywhere in the range [0,∞). We

divide this range into 2B quantization intervals, where B represents the number

of feedback bits. The range of each of these quantization intervals is selected such

that the probability of instantaneous CGI, |h|2, falling in any of the given intervals

is the same. Corresponding to these intervals, let the set of quantization levels

be denoted by C = {c1, c2, ..., c2B , c2B+1}, where cj represents the jth quantization

level and c1 = 0 and c2B+1 = ∞. For a given CGI, |h|2, the sink node determines

the interval [ci, ci+1), for i ∈ {1, 2, ..., 2B} such that ci 6 |h|2 < ci+1, and feeds back

the index i corresponding to the quantization interval [ci, ci+1) to the sensor node.

Note that the CGI, |h|2, falls in each of these intervals with equal probability, i.e.,

P
{
ci 6 |h|2 < ci+1

}
=

1

2B
, ∀ i ∈ {1, 2, ..., 2B}, (2.14)

where P{·} represents the probability. We assume the time spent in estimation,
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quantization, and feedback is negligible, thus the sensor node can effectively exploit

the provided CGI.

2.2.2 Statistical CGI Available at the Sensor Device

Scenario 3 : In this scenario, the sink node has perfect estimate of the channel

but no instantaneous feedback is available. Only the statistical CGI is available

at the sensor node. Therefore, the sensor node cannot adapt compression and

transmission policies to varying channel conditions in different time blocks. Instead

a constant compression ratio and transmission rate is determined, and subsequently

used in each time block, which maximizes the node-lifetime.

2.2.3 BER Expression

We consider the sensor node is able to control the transmission rate, wherein the

best M value needs to be determined which will allow the sensor node to achieve

the required system performance. Note that many different BER expressions exist

in the literature for M -QAM. Here, we use the following BER bound defined for

M -QAM modulation scheme [94], since it is easy to invert in order to obtain M as

a function of the required BER

BER 6 ω2 exp

(
− ω1

(M − 1)
γ

)
, (2.15)

where ω1, ω2 are constants and γ represents the received signal-to-noise ratio (SNR)

which is defined as follows [82]

γ = κ
Pt|h|2
σ2dα

, (2.16)

where κ =
(
λ
4π

)2
is the attenuation factor, λ is the wavelength and Pt is the transmit

power. For M > 4 and 0 6 γ 6 20 dB, the bound in (2.15) with ω1 = 1.5 and

ω2 = 0.2, is tight to within 1 dB of the exact result in [82].

In Section 2.3, we will use (2.15) to determine the optimal design parameters

for each of the scenarios defined above.
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2.3 Device-Lifetime Maximization Problem

The main problem we address is to determine the optimal compression and trans-

mission policies which will maximize the node-lifetime under given delay constraint

and BER performance. From (2.11), we can see that the node-lifetime is calcu-

lated using a predefined initial energy level, BcapVop, and the controllable rate of

energy consumption, Pavg, which is a function of E[Ψ]. Node-lifetime is inversely

proportional to E[Ψ], which implies that maximizing node-lifetime is equivalent to

minimizing E[Ψ]. Based on the compression and transmission energy cost mod-

els, defined in Section II, Ψ inherits the tradeoff between data compression and

transmission.

In this section, we study three different problems based on the scenarios defined

in Section 2.2.1. In Scenario 1 and Scenario 2, the knowledge of the instantaneous

CGI is used by the sensor node to optimally choose the design parameters in order

to adapt to each realization of the channel, with an objective to minimize Ψ in

each time block. On the other hand, in Scenario 3, when no knowledge of the

instantaneous CGI is available, the optimal design parameters are set to be fixed

for each time block, wherein, the objective is still to minimize Ψ. It is because, in

Scenario 3, the value of Ψ is the same for all time blocks.

2.3.1 Instantaneous CGI Available at the Sensor Device

In this subsection, we consider an adaptive compression and transmission rate

control system in which for a given time block, the design target is to minimize

the energy cost of compression and transmission under the given delay and BER

constraints. Based on the availability of the instantaneous CGI at the sensor node

we study the following two problems.

2.3.1.1 Perfect CGI Availability

The first problem we study, considering the availability of perfect CGI at the sensor

node, can be summarized as follows:

Problem 1: What is the optimal compression and transmission policy that

minimizes the compression and transmission energy cost under specific delay and
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BER constraints, when perfect channel gain is known at the sensor node?

The energy consumption cost of compression and transmission, Ψ, is defined in

(2.13). Now given the value of instantaneous CGI, |h|2, Problem 1 can be expressed

as follows
minimize
M,Pt,Dcp

Ψ(M,Pt, Dcp)

subject to Tcp + Ttx 6 T,

BER(M,Pt) 6 φ,

Pt > 0,

M > 2,

M 6Mmax,

Dcp > Dmin,

Dcp 6 D.

(2.17)

where the first constraint defines the delay constraint for the data delivery, thus

both compression and transmission processes should be completed within the dead-

line and the second constraint mandates that the BER should be below or equal to

a specific threshold value denoted by φ. The remaining constraints reflect practical

range of values for M,Pt, and Dcp. In the fifth constraint, Mmax is the maximum

value of the constellation size which can be used by the sensor node. In the sixth

constraint, Dmin represents the maximum achievable compression that can be ap-

plied using a given compression algorithm and the compressed data is completely

transmitted within the same time block at the highest allowed transmission rate.

Thus, Dmin is the lower bound on Dcp and a function of Mmax, T , D and β. Dmin is

computed by numerically solving the following equation using the variable-precision

floating-point arithmetic (VPA) method

τDβ+1D−βmin − τD +
DminTs ln(2)

ln(Mmax)
= T. (2.18)

In order to solve (2.17), we first present Proposition 1, which allows the solution

to (2.17) to be given by Theorem 1.

Proposition 1. The optimal Pt to minimize Ψ(M,Pt, Dcp) for given values of M
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and Dcp while satisfying the constraints in (2.17) is given by

Pt = (1−M)
Ω

|h|2 , (2.19)

where

Ω =
σ2dα ln(φ/ω2)

ω1κ
. (2.20)

Proof. The proof is provided in Appendix D.1. �

Using the result in Proposition 1, substituting Tcp, Ttx, r, Ptx, ε and Pt from

(2.1), (2.3), (2.4), (2.9), (2.8) and (2.19), respectively, in (2.13) yields Ψ as a

function of M and Dcp for given instantaneous CGI, |h|2, which can be expressed

as follows

Ψ(M,Dcp) = τDβ+1D−βcp Pcp − τDPcp −
DcpTs ln(2)

ln(M)

(
3Ω(M

1
2 − 1)2

µ|h|2 − Po

)
.

(2.21)

Now a simpler equivalent optimization problem with only two design parame-

ters, i.e., M,Dcp, needs to be solved and the third parameter Pt can be obtained

using the result in Proposition 1. Accordingly, the solution to the optimization

problem in (2.17) is given by the following theorem.

Theorem 1. In solving the optimization problem in (2.17), the optimal constella-

tion size is given by the following conditional expression

M∗ =

M̃, if Q(M̃, D̃cp) < T.

min
(
M̂,Mmax

)
, otherwise.

(2.22)

where M̃ and M̂ are given by the solution of the following equations which can be

solved numerically using the VPA method

3Ω

µ|h|2
(
M̃

1
2 − 1

)(
(ln(M̃)− 1)M̃

1
2 + 1

)
+ Po = 0, (2.23)

T

D
+ τ − τξ

−β
β+1 =

Ts ln(2)

ln
(
M̂
) ξ 1

β+1 , (2.24)
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where

ξ =
Pcp − Po − 3Ω

µ|h|2
(
M̂

1
2−1

)(
(ln(M̂)−1)M̂

1
2 + 1

)
3Ω

τβµ|h|2
(
M̂

1
2 − M̂

) , (2.25)

respectively,

Q(M̃, D̃cp) , τDβ+1D̃−βcp − τD +
D̃cpTs

log2

(
M̃
) , (2.26)

and

D̃cp

D
=

(
τβPcp ln(M̃)

3ΩTs ln(2)
µ|h|2

(
M̃

1
2 − 1

)2
+ PoTs ln(2)

) 1
β+1

, (2.27)

and the optimal transmit power is given by

P ∗t =
(
1−M∗) Ω

|h|2 , (2.28)

and the optimal compression ratio is given by

D∗cp

D
=


D̃cp

D
, if Q(M̃, D̃cp) < T.

max
(
Dmin

D
, D̂cp

D

)
, otherwise.

(2.29)

where D̂cp

D
= ξ

1
β+1 and ξ is defined in (2.25).

Proof. The proof is provided in Appendix C.2. �

The insights from Theorem 1 are discussed in the following four remarks.

Remark 1. M̃ and D̃cp provide a lower bound on the optimization problem in

(2.17) for given instantaneous CGI, |h|2. M̃ and D̃cp are optimal design param-

eters when the first constraint in (2.17) is slack, i.e., Q(M̃, D̃cp) < T , and other

constraints are also slack. On the other hand, M̂ and D̂cp are optimal design

parameters for optimization problem in (2.17) for given instantaneous CGI, |h|2,

when all constraints in (2.17) are slack except for the first constraint.

Remark 2. In prior power-rate adaptation schemes [52–56,95], which do not con-

sider data compression, the transmission policy is adapted with channel variations

considering delay constraint under a fixed BER. In these schemes, for a fixed
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amount of data to be transmitted, the transmission policy is adapted for the chan-

nel realization in each time block. However, in our case the transmitted compressed

data size changes from one time block to the next, as a result of joint optimization

of the transmission and compression policies adapting the channel realization in

each time block.

Remark 3. The classical works [52, 53] have designed the transmission rate con-

trol policies which are adaptive to the channel conditions. These schemes do not

consider data compression. Their optimal solution suggests that the energy cost

of data communication is a strictly increasing function of the transmission rate.

Therefore, the transmission rate should be minimized for the given delay bound,

T , in order to minimize the energy cost of data communication cost. That is, the

lowest transmission rate which will meet the delay constraint with equality is op-

timal for any value of the delay bound, T . However, in our case the combined

data compression and transmission rate strategy suggests that there exists a lower

bound on the total energy cost of compression and transmission. In this regard, the

corresponding optimal design parameters cost a finite delay, Q. Therefore, if the

required delay constraint is larger than this delay only then these design parameters

will maximize the lifetime and are optimal. Hence, in general, it is not optimal to

transmit at the lowest transmission rate.

Remark 4. The optimal constellation size given by (2.22) is real valued. Thus,

for practical admissibility, the transmission policy should opt to select the closest

value from the available set of modulation order values. If a lower value is closer

then it can only be selected if the first constraint in (2.17) is slack, else a higher

value should be selected which will surely satisfy the first constraint in (2.17). This

optimal practical value, denoted by M∗
pr, is subsequently used to determine P ∗t and

D∗cp

D
. M∗

pr can be obtained using the following conditional expression

M∗
pr =


min

(
2L, ν1

)
, if |M∗ − ν1| 6 |M∗ − ν2|

andQ(ν1, D̆cp) < T.

min
(
2L, ν2

)
, otherwise.

(2.30)

where min(·) is the min operation, | · | represents the absolute value, 2L is the maxi-
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mum modulation order supported by the system, ν1 = 2blog2(M∗)c, ν2 = 2dlog2(M∗)e, Q
is defined in (2.39), b·c and d·e is the floor and ceil operations, respectively. Note,

the compressed data size D̆cp, is a function of the constellation size 2blog2(M∗)c.

2.3.1.2 Imperfect CGI Availability

The second problem we study considering imperfect CGI availability at the sensor

node can be given as:

Problem 2: What is the optimal compression and transmission policy that

minimizes the compression and transmission energy cost under specific delay and

BER constraints, when quantized channel gain is known at the sensor node?

In Scenario 2, for a given channel realization h, the sink node feeds back the

quantization level index i to the sensor node, which implies CGI |h|2, lies in the

interval [ci, ci+1), i.e., ci 6 |h|2 < ci+1. Hence, there lies some channel uncertainty

at the sensor node. As discussed above, the sensor node can minimize Ψ in order

to maximize the node-lifetime. Therefore, given ci 6 |h|2 < ci+1, the Problem 2

can be expressed as follows

minimize
M,Pt,Dcp

Ψ(M,Pt, Dcp)

subject to Tcp + Ttx 6 T,

BER(M,Pt) 6 φ, ∀ ci 6 |h|2 < ci+1,

Pt > 0,

M > 2,

M 6Mmax,

Dcp > Dmin,

Dcp 6 D.

(2.31)

where the first constraint in (2.31) defines the delay constraint for the data delivery,

thus both compression and transmission processes should be completed within the

deadline, and the second constraint in (2.31) mandates that the BER should be

below or equal to a specific threshold value denoted by φ, where the actual CGI,

|h|2, lies within the interval [ci, ci+1).
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Accordingly, the solution to the problem in (2.31) is given by the following

corollary.

Corollary 1. In solving the optimization problem in (2.31), the optimal constel-

lation size, transmit power, and compression ratio can be obtained using (2.22),

(2.28), and (2.29), respectively, by replacing |h|2 with ci.

Proof. The BER, defined in (2.15), is a function of constellation size, M , and

the CGI, |h|2. Recall, the sink node feeds back the index i corresponding to the

quantization interval, where the actual CGI lies in the interval ci 6 |h|2 < ci+1,

as mentioned earlier in Section 2.2.1. In order to meet the required BER constraint,

defined in (2.31), the sensor node selects the smallest value, i.e., ci, representing

the worst-case choice for the CGI, in the quantization interval [ci, ci+1) indicated

by the index i. This underestimation ensures the quantized CGI, ci, is always less

than or equal to the actual CGI, i.e., ci 6 |h|2. Hence the required BER constraint,

defined in (2.31), is naturally satisfied for any given level of channel uncertainty due

to CGI quantization, i.e., BER(ci) 6 BER(|h|2) 6 φ. Therefore, by replacing

|h|2 with ci in (2.15) and following similar steps provided in Appendix D.1, the

optimal constellation size, transmit power, and compression ratio can be obtained,

given ci 6 |h|2 < ci+1. �

Remark 5. The values for the optimal design parameters for optimization problem

defined in (2.31) can be obtained offline using Corollary 1. This is because there

are only a finite set of quantization levels, each corresponding to a set of design

parameters values. For example, if 5 feedback bits are used then only 32 different

values for the optimal design parameters need to be computed. These values can

then be used in a given time block based on the received quantized CGI feedback

value, denoted by ci. Hence, the proposed solution for Scenario 2 is practical and

feasible for energy constrained wireless sensor based MTC devices.

2.3.2 Statistical CGI Availability

The third problem we study considering availability of only statistical information

of CGI at the sensor node can be summarized as follows:
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Problem 3: What is the optimal compression and transmission policy that

minimizes the compression and transmission energy cost under specific delay and

BER constraints, when only statistical information about the channel gain is known

at the sensor node?

Since, the instantaneous CGI is not available, thus the design parameters cannot

be adapted to any given channel condition and cannot guarantee a certain BER,

in a given time block. However, we can determine the optimal design parameters

which are set to be the same for each time block with an objective to minimize the

compression and transmission energy cost, Ψ. Note that E[Ψ] = Ψ when the design

parameters are set to be the same for all time blocks. Given the fading power gain

distribution, f(|h|2), Problem 3 can be expressed as follows

minimize
M,Pt,Dcp

Ψ(M,Pt, Dcp)

subject to Tcp + Ttx 6 T,

P{BER 6 φ} > ϑ,

Pt > 0,

M > 2,

M 6Mmax,

Dcp > Dmin,

Dcp 6 D.

(2.32)

where the first constraint in (2.32) defines the delay constraint for the data deliv-

ery, thus both compression and transmission processes should be completed within

the deadline, and the second constraint in (2.32) mandates that the probability

of having as acceptable level of BER should be greater than certain percentage.

Specifically, φ denote the maximum acceptable BER and ϑ denote the required

minimum probability of achieving the acceptable BER performance. The third

constraint in (2.32) guarantees a given BER performance with a certain proba-

bility in each time block. Note that an alternative way of constraining the BER

performance is to put an upper bound on the average BER over all time blocks.

But we do not adopt it because it gives minimal control over the BER performance

in each time block.
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Proposition 2. The optimal Pt to minimize Ψ(M,Pt, Dcp) for given values of M

and Dcp while satisfying the constraints in (2.32) is given by

Pt = (M − 1)
Ω

ς ln(ϑ)
. (2.33)

Proof. The proof is provided in Appendix C.3. �

Using the result in Proposition 2, substituting Tcp, Ttx, r, Ptx, ε and Pt from

(2.1), (2.3), (2.4), (2.9), (2.8) and (2.33), respectively, in (2.13) yields Ψ as a

function of M and Dcp as follows

Ψ(M,Dcp) = τDβ+1D−βcp Pcp − τDPcp +
DcpTs ln(2)

ln(M)

(
3Ω(M

1
2 − 1)2

µς ln(ϑ)
+ Po

)
.

(2.34)

Now a simpler equivalent optimization problem with only two design parame-

ters, i.e., M,Dcp, needs to be solved and the third parameter Pt can be obtained

using the result in Proposition 2. Accordingly, the solution to the optimization

problem in (2.32) is given by the following theorem.

Theorem 2. In solving the optimization problem in (2.32), the optimal constella-

tion size is given by the following conditional expression

M∗ =

M̃, if Q(M̃, D̃cp) < T.

min
(
M̂,Mmax

)
, otherwise.

(2.35)

where M̃ and M̂ are given by the solution of the following equations which can be

solved numerically using VPA method

− 3Ω

µς ln(ϑ)

(
M̃

1
2 − 1

)(
(ln(M̃)− 1)M̃

1
2 + 1

)
+ Po = 0, (2.36)

T

D
+ τ − τζ

−β
β+1 =

Ts ln(2)

ln(M̂)
ζ

1
β+1 , (2.37)
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where

ζ =
Pcp−Po+ 3Ω

µς ln(ϑ)

(
M̂

1
2−1

)(
(ln(M̂)−1)M̂

1
2 +1

)
− 3Ω
ςτβµ ln(ϑ)

(
M̂

1
2 − M̂

) , (2.38)

respectively,

Q(M̃, D̃cp) , τDβ+1D̃−βcp − τD +
D̃cpTs

log2

(
M̃
) , (2.39)

and

D̃cp

D
=

(
τβPcp ln(M̃)

−3ΩTs ln(2)
µς ln(ϑ)

(
M̃

1
2 − 1

)2
+ PoTs ln(2)

) 1
β+1

, (2.40)

and the optimal transmit power is given by

P ∗t =
(
M∗ − 1

) Ω

ς ln(ϑ)
, (2.41)

and the optimal compression ratio is given by

D∗cp

D
=


D̃cp

D
, if Q(M̃, D̃cp) < T.

max
(
Dmin

D
, D̂cp

D

)
, otherwise.

(2.42)

where D̂cp

D
= ζ

1
β+1 and ζ is defined in (2.38).

Proof. The proof follows similar steps as the proof of Theorem 1. Hence, it is

omitted for brevity. �

Remark 6. As discussed earlier in Remark 4, for practical admissibility the op-

timal constellation size, M∗, needs to be scaled to the closest achievable practical

value using (2.30). Similarly, P ∗t needs to meet the maximum power bound of the

battery.

Remark 7. The values for the optimal design parameters for optimization problem

defined in (2.32) can be obtained offline using Theorem 2. It is because these values

are fixed for all time blocks. Thus, the proposed solution for Scenario 3 is practical

and feasible for energy constrained wireless sensor based MTC devices.

Remark 8. An alternative scenario to consider is to use an average BER con-

straint even when the instantaneous CGI is available. In this case, the lifetime can
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be further extended by dropping the sensed data in a given time block in which the

channel is in deep fade. Let us replace the BER constraint function in (2.17) as

follows: P{BER 6 φ} > ϑ. Thus, the probabilistic BER constraint can directly give

a threshold on channel gain, given by Θ = −ς ln
(
ϑ
)
, above which data transmission

should occur. Then the sensor only employs Theorem 1 to design compression and

transmission when the instantaneous channel gain is above the threshold, Θ.

2.4 Numerical Results

In this section, we present the numerical results to illustrate the performance of

the proposed Scenarios 1-3 jointly optimizing data compression and transmission

rate. Unless specified otherwise, the values for the system parameters shown in

Table 5.1 are adopted.

To illustrate the advantage of joint optimization of data compression and trans-

mission rate, we are interested in prior works which provide solutions for the data

transmission design to maximize node-lifetime. To the best of our knowledge, the

prior works [53, 54, 96] are the most relevant and most recent schemes which can

be compared to our proposed scheme. In this regard, we adopt the data transmis-

sion design policies proposed by these schemes for our considered system model

except that data compression is not employed. Moreover, when our considered bit

error rate and delay constraints are applied, the resultant data transmission design

problem can be given as in (17) by substituting Dcp = D. We refer to this adapted

scheme as the baseline scheme. The strategy followed to optimize the transmission

rate policy for the baseline scheme is essentially the same as in the state of the

art [53,54,96]. The optimal constellation size for this scheme, denoted by M∗
nc, can

be obtained using Proposition 3.

Proposition 3. The optimal constellation size to maximize lifetime without per-

forming compression while satisfying constraints given in (2.17) is given by the

following conditional expression

M∗
nc =


M̃, if DTs

log2

(
M̃
) < T.

exp
(
DTs ln(2)

T

)
, otherwise.

(2.43)
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Table 2.1: System parameter values.

Name Symbol Value
Drain efficiency of power amplifier µ 0.35
Operating voltage Vop 3 V
Scale parameter for CGI’s pdf ς 1
Battery capacity Bcap 9000 As
Power cost of compression Pcp 24 mW
Symbol period Ts 16 µs
Power cost of synthesizer Psyn 50 mW
constant ω2 0.2
Power cost of filter Pfil 2.5 mW
constant ω1 1.5
Power cost of mixer Pmix 30.3 mW
distance d 20 m
Uncompressed data D 20kb
Noise power σ2 -174 dBm
Per bit processing time τ 0.35 ns/b
BER constraint φ 10−3

Compression cost parameter β 5
Delay constraint T 50 ms

where M̃ is given by the solution of the following equation which can be solved

numerically using the VPA method

3Ω

µ|h|2
(
M̃

1
2 − 1

)(
(ln(M̃)− 1)M̃

1
2 + 1

)
+ Po = 0, (2.44)

and the optimal transmit power is given by

P ∗t =
(
1−M∗

nc

) Ω

|h|2 . (2.45)

Proof. The proof follows similar steps as the proof of Theorem 1 and substituting

Dcp = D. Hence, it is omitted for brevity. �
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2.4.1 Advantage of Proposed Scheme

Fig. 2.3a plots the node-lifetime, TNL (days), versus the BER constraint, φ, for Sce-

nario 1 and system parameters in Table 5.1. The lifetime is plotted with the optimal

(real valued) M∗ in (2.22), the practical (quantized value) Mpr
∗ in (2.30) and the

baseline scheme in Mnc
∗ in (2.43) in Fig. 2.3a. We can see that the gain compared

to the baseline scheme is significant - between 95% to 115% for the considered

range of BER constraint. This shows the advantage of joint optimal compression

and transmission rate control. In addition, we can see that the node-lifetime is not

so significantly affected by the BER constraint. As the BER constraint is relaxed,

the lifetime slightly increases. For instance, as BER constraint is varied from strin-

gent BER requirement, i.e., 10−6, to loose BER requirement, i.e., 10−2, the lifetime

only changes by around 30%. Finally, the performance with practical modulation

scheme is very close to the optimal performance, e.g., at φ = 10−5 the gap is less

than 4%.

Fig. 2.3b plots the node-lifetime, TNL (days), versus the delay constraint, T

(ms), for Scenario 1 and system parameters in Table 5.1. The node-lifetime is plot-

ted with the optimal (real valued) M∗ in (2.22), the practical (quantized value)

Mpr
∗ in (2.30) and the baseline scheme in Mnc

∗ in (2.43) in Fig. 2.3b. The com-

pression ratio and transmission rate are optimized through M and Dcp. Though

inherently independent, jointly optimizing M , Pt, and Dcp to maximize the node-

lifetime yields their relationship as follows. As given in Theorem 1, the optimal

constellation size has a direct relationship with both the optimal transmit power

level and the optimal compressed data size. Note, a smaller value of compressed

data size means a high level of compression is applied.

The explanation of the gains shown in Fig. 2.3b is as follows. The performance

gains are comparatively lower (v 90%) in the case when the delay bound is loose

(v 80ms). This is because the data communication energy cost without employ-

ing compression almost increases exponentially with the employed transmission

rate. When the delay bound is stringent then relatively lower transmission rate

is good enough to transmit data whilst satisfying the BER and delay constraints.

Since, the data communication energy cost without employing compression is not

too significant, employing compression improves the lifetime with relatively lesser
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Figure 2.3: Lifetime vs. BER (a) and delay constraints (b) for Scenario 1 with and
without data compression, when T = 50 ms for (a) and φ = 10−3 for (b).
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magnitude. The performance gains are huge (v 2000%) when the delay bound is

stringent (v 20ms). This is because, if the delay bound is stringent then a very

high transmission rate is required to transmit the given data. Thus, the per bit

transmission energy cost is very large for a stringent delay bound. However, in the

proposed schemes, an optimal level of compression is applied to the data and the

energy of applying (optimal level of) compression is much less than transmitting

data at a very high transmission rate, i.e., per bit compression energy cost is very

low. Therefore, with the help of data compression the amount of data is reduced

and in addition the compressed data is transmitted at a comparatively lower trans-

mission rate. As a result large gains are possible when optimal level of compression

and transmission rate policy is employed.

From Fig. 2.3a and 2.3b, we can say that joint optimization is much better than

no compression under any BER and delay constraints. In addition, the performance

gain observed ranges from 90% to 2000% and is most profound when the delay

constraint is stringent, which demonstrates the suitability of applying the proposed

scheme in the low latency regime.

2.4.2 Impact of BER and Delay Constraints

Fig. 2.4a plots the reciprocal of the compression ratio and the transmission rate vs.

the BER constraint for different delay constraint values, for Scenario 1. Note, high

compression ratio implies less compression is applied, thus we plot its reciprocal

for better clarity. The performance observed in Fig. 2.3a is explained in terms of

design parameters in Fig. 2.4a. We can see that as the BER constraint becomes

less stringent, the transmission rate increases, especially in the range 10−3 to 10−2,

whereas the level of compression remains almost constant. Hence, the optimal level

of compression is insensitive to the change in the BER requirement. However, the

optimal transmission rate increases as BER constraint is relaxed. Thus, the best

choice is to keep a constant optimal level of compression and adapt transmission

rate as per the BER requirement.

Fig. 2.4b plots the reciprocal of the compression ratio and the transmission

rate vs. the delay constraint for different BER constraint values, for Scenario 1.

The performance observed in Fig. 2.3b is explained in terms of design parameters
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Figure 2.4: Optimal compression ratio and transmission rate vs. BER (a) and
delay constraints (b) for Scenario 1, when T = {40, 50, 100} ms for (a) and φ =
{10−3, 10−5} for (b).
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in Fig. 2.4b. We can see that as the delay constraint becomes less stringent, the

transmission rate significantly increases and the level compression also significantly

increases until the upper bound Q in (2.26) is reached. Beyond that, both design

parameters remains almost constant.

Overall, it is best to reduce compression and increase the transmission rate

when the delay constraint gets stringent and vice versa. The optimal design of

compression and transmission rate is more sensitive to the delay constraint when

the system requires low latency.

2.4.3 Effect of Number of Feedback Bits

Fig. 2.5 plots the lifetime versus the BER constraint with perfect feedback for

Scenario 1 and quantized feedback for Scenario 2. The gap between the performance

of Scenario 1 (perfect CGI availability at the sensor node) and Scenario 2 (quantized

CGI availability at the sensor node) is small for practical number of feedback bits.

It can be observed that a relatively small number of feedback bits are enough, e.g.,

6 bits achieve within 0.6% optimal performance.

2.4.4 Impact of BER and Delay Constraints

Fig. 2.6 plots the lifetime versus the BER constraint for different level of probabilis-

tic BER performance requirement, ϑ, for Scenario 3. The lifetime is impacted by

the BER constraint in a similar manner as compared to Scenario 1 shown in Fig.

2.3a. The lifetime non-linearly decreases with increase in the BER performance

requirement.

Fig. 2.7a shows that for a given BER constraint, φ, as ϑ increases both the

transmission rate and the level of compression decrease. However, in the case of

stringent BER requirement, i.e., ϑ = 0.99, both the level of compression and

transmission rate remains almost constant for different values of φ. For a given

value of ϑ, the level of compression increases with φ, unlike the trend observed in

Fig. 2.4a for Scenario 1.

Fig. 2.7b shows that for a given delay constraint, as ϑ increases, the transmis-

sion rate decreases. The level of compression displays different trend as compared

to Scenario 1 in Fig. 2.3b. This is because the value of the upper bound Q in
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Figure 2.5: Lifetime vs. BER constraint for Scenario 2 for different level of channel
uncertainty, when T = 50 ms.

(2.39) increases as ϑ increases. Thus, the level of compression increase until this

upper bound is reached and afterwards it remains almost constant.

2.5 Summary

In this chapter, we investigated the joint optimization of compression and transmis-

sion strategy for an energy-constrained sensor node, and illustrated their tradeoff.

We showed that the joint optimization performs much better than only optimiz-

ing transmission without compression under any BER and delay constraints. The

performance gain observed ranges from 90% to 2000% and is most profound when

the delay constraint is stringent. Overall, it is best to reduce compression and in-

crease the transmission rate when the delay constraint gets more stringent and vice

versa. The optimal level of compression is insensitive to the change in the BER

requirement. However, the optimal transmission rate increases as BER constraint

is relaxed. Hence, the best choice is to keep a constant optimal level of compres-

sion and adapt transmission rate as per the BER requirement. The optimal level
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Figure 2.6: Lifetime vs. BER constraint for Scenario 3 for different probabilistic
BER performance requirement, when T = 50 ms and φ = 10−3.

of compression has an inverse relationship with severity of the BER requirement

when the delay constraint is stringent and vice versa. In this chapter, we have

assumed that new data is generated once the previous one is processed. In some

event monitoring applications, the sensed data can arrive before the previous data

is completely transmitted. Future work can consider transmission and compression

design for such a scenario.
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Figure 2.7: Optimal compression and transmission rate vs. BER (a) and delay con-
straints (b) for Scenario 3 for different probabilistic BER performance requirement,
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Chapter 3

Single-User Compression and

Transmission Rate Control for

Wireless Powered Machine-Type

Communication

In this chapter, we consider a network scenario that is evolved from the network sce-

nario presented in chapter 2 and employs an important aspect of energy-harvesting

for a multi-user multi-channel sparse machine-type communication (MTC) system.

In such a system, each machine-type device (MTD) is battery powered which is

recharged by an energy-harvesting source for perpetual operation. Each MTD is

assigned a channel and transmit data on dedicated. The data may be generated

or sensed by the MTD periodically, due to the occurrence of an event of interest,

or on demand (only when requested by the receiver) that is to be delivered under

given reliability and delay conditions. Moreover, the MTDs perform duty cycling

as well as deep sleep operation. This network scenario cover loss tolerant and

high reliability demanding MTC systems. For this network scenario, designing a

generic single-user communication policy would suffice and the same policy can be

employed by all other users for the individual system parameters.

The limited operational time of battery operated wireless MTC nodes is a major

hurdle in fully realizing the potential of the Internet of Things (IoT) [3]. Radio

53
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frequency based energy harvesting (RF-EH) has recently emerged as a promising

solution to provide perpetual-lifetime for MTC nodes [32–34], i.e., it may stay

operational indefinitely long. In this chapter, we consider a unified wireless power

transfer (WPT) and wireless information transfer (WIT) system.

In this chapter, we consider a MTC node that is served by a hybrid access

point (HAP) which provides RF power transfer to the node and receives data

transmission from the node. Due to the lossy wireless medium and limited efficiency

of RF energy transducer, the energy cost at the HAP is substantial. To minimize

the energy cost while still satisfying the system requirement, the harvested energy

at the MTC node must be used efficiently. To this end, we consider that the

MTC node employs data compression in order to reduce the energy cost of data

transmission. Data compression itself consumes time and energy, which needs to be

carefully controlled. We seek to intelligently design the operation of a MTC node

and a HAP with an objective to minimize the power transferred by the HAP. Thus,

we propose to jointly optimize the harvesting-time, compression and transmission

design, to minimize the energy cost of the system under given delay constraint.

This chapter is organized as follows. The system model is presented in Sec-

tion 3.1. The system energy minimization problem composed of both transmitter

and receiver side designs is formulated and solved in Section 3.2. Numerical results

are presented in Section 3.3. Finally, Section 3.4 concludes the chapter.

3.1 System Model

We consider a wireless powered communication system employing a harvest-and-

use strategy, i.e., the HAP periodically transmits a power beacon and a MTC node

harvests RF energy and transmits its sensed data to the HAP, as illustrated in

Fig. 3.1. For a multi-user multi-channel sparse MTC system designing a generic

single-user communication policy would suffice and the same policy can be em-

ployed by all other users for the individual system parameters. The system follows

a block-wise operation with a block of duration T seconds. Within each time block

the MTC node performs four main functions, i.e., (i) energy harvesting, (ii) sens-

ing, (iii) compression and (iv) transmission, as shown in Fig. 3.2. The energy spent

by the MTC node to perform all its operations in a given time block is denoted by
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Figure 3.1: Illustration of the considered WPCN.

EMTC.

Channel model: The MTC node is equipped with an omnidirectional antenna

and the HAP is equipped with a directional antenna with gain G. The MTC node

and the HAP are located at a distance r. We assume channel reciprocity between

WPT and WIT channels [97]. The channel is composed of large scale path loss,

with path loss exponent α, and small-scale quasi-static flat Rayleigh fading channel,

i.e., the fading channel gain |h|2 remains constant in a given time block and is

independently and identically distributed from one time block to the next [97,98].

We assume the instantaneous channel gain information (CGI) is available only at

the HAP [97]. We consider the additive white Gaussian noise for the channel with

zero mean and variance σ2. The noise power density is denoted by N0.

Energy Harvesting: The HAP is powered by an electrical grid, whereas the

MTC node has simple short-term energy storage capability [97, 98]. Hence, we

assume that energy accumulation is not possible at the MTC node. During the

first TH seconds of a time block, the HAP transmits the power beacon with a fixed

transmit power level denoted by PPT, and the MTC node harvests EH units of

energy under fading channel gain |h|2, given as

EH = ηTH

(
κ
|h|2PPT

rα
− Pth

)+

, (3.1)

where κ =
(
ν
4π

)2
G is the attenuation factor and ν is the wavelength, 0 6 η 6 1 is

the loss in energy transducer during conversion of harvested energy into electrical
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Figure 3.2: Timing diagram for energy harvesting (EH), sensing (SEN), compres-
sion (CP) and transmission (TX) processes.

energy, Pth is the RF-EH sensitivity threshold, and (z)+ = max{z, 0}. Accordingly,

the RF-EH circuit can only be activated if the received signal power is greater than

a RF-EH sensitivity threshold [98]. The value of the thermal noise power, σ2, is

typically very small, and thus it is not included in the energy harvesting model.

Sensing: We assume the MTC node spends a constant amount of time and

energy to acquire a fixed amount of data in each time block [89]. Note that this

sensing cost model is generic and may represent any other operation or can even

be ignored. Let the time, energy, power spent to sense and generate a fixed data

of size D bits is denoted by Tsen, Esen and Psen, respectively. Esen is given as

Esen = ϑDPsen, (3.2)

where ϑ is the per bit sensing time.

Compression: Before transmission, the sensed data of size D bits is com-

pressed into Dcp bits as per the given compression ratio Dcp

D
. In this chapter, we

adopt a non-linear compression cost model given in [48] to compute the compression

time, denoted by Tcp, as a function of Dcp

D
, which is given as

Tcp = τD
( D

Dcp

)β
− τD, (3.3)

where τ is the per bit processing time and β is the compression algorithm dependent

parameter that is proportional to the compression algorithm’s complexity. β deter-
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mines the time cost for achieving a given compression ratio and can be calculated

off-line for any specified compression algorithm and given hardware resources. τ

depends upon the micro-controller unit (MCU) processing resources and the num-

ber of program instructions executed to process 1 bit of data. Note that τ does

not represent the compression time per bit. Let Pcp denote the power consumed

by the MTC node during data compression process. Pcp is the same as the power

consumed while MCU is processing information, which is predefined.

Transmission: Once the compression process is complete, the MTC node

needs to transmit the compressed data, Dcp, within the same time block. Let the

transmission time is denoted by Ttx. Thereby, Ttx is given as

Ttx =
Dcp

R
, (3.4)

and the transmission rate, R, is given as

R = B log2

(
1 +

γ

Γ

)
, (3.5)

where B is the bandwidth of the considered system, PIT is the transmit power level,

and Γ characterizes the gap between the achievable rate and the channel capacity

due to the use of practical modulation and coding schemes [60]. γ represents the

received signal-to-noise ratio (SNR) which is given by [82] as follows

γ =
κ|h|2PIT

σ2dα
. (3.6)

To compute the data transmission power cost, denoted by Ptx, we adopt a prac-

tical model as given in [60]. The transmission power cost is composed of two main

components, the transmitted power, PIT, and the static communication module

circuitry power, denoted by Po, which accounts for digital-to-analog converter, fre-

quency synthesizer, mixer, transmit filter, and antenna circuits, etc. Accordingly,

Ptx is given as follows

Ptx =
PIT

µ
+ Po, (3.7)

where µ ∈ (0, 1] is the drain efficiency of the power amplifier.

The energy spent by the MTC node to perform all its operations in a given
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time block is

EMTC = PsenTsen + PcpTcp + PtxTtx. (3.8)

Note that it is possible to perform energy harvesting and sensing operation

simultaneously. It allows more time for energy harvesting and thus increases the

energy budget. In order to achieve this the rate of energy harvesting must be higher

than the rate of energy expenditure on sensing (e.g., if a drone takes 1 hr to charge

but its maximum flying time is 20 mins, then it implies that we cannot wirelessly

charge and fly the drone at the same time) and if this condition is satisfied than

simultaneous operation is possible. Although, in this setting, energy harvesting can

be performed for longer time, however the harvesting energy will not necessarily

be much higher as a fraction of energy is spent on the sensing operation. The gain

in this setting depends upon the difference of the rates of energy harvesting and

sensing energy expenditure, and the duration of these two operations. Nevertheless,

it will complicate the device circuitry and its operation. The approach we employed

wherein sensing is performed post energy harvesting is more generalized approach

that is valid for any energy harvesting and sensing energy expenditure rates.

We assume that the instantaneous channel gain for MTC device is perfectly

estimated by the HAP, which is inline with the relevant prior works [37,66,67,99].

The details of the channel estimation process is outside the scope of this work.

Note that the energy portion split by the device for pilot signal transmission does

not affect the design of the optimal compression and transmission policies. Thus,

we ignore this energy cost. However, the pilot signal transmission energy cost can

straightforwardly be added in the final system energy cost.

3.2 Energy Minimization Problem

In this section, we first present the design objective and then formulate the energy

minimization problem. Finally, we provide the solution to the problem.

Design Objective: The main problem that we study is to minimize the energy

cost of the system. The target is to optimally utilize the power injected into the

system. The MTC node solely relies on the power transferred by the HAP. Thus,

the aforementioned objective can be achieved by minimizing the HAP’s transmitted
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energy, EHAP = THPPT, while satisfying the given system constraints. Therefore,

we design policies for the RF energy harvesting, compression and transmission

processes whilst guaranteeing the desired quality-of-service (QoS) requirements.

We consider a harvest-and-use strategy for energy harvesting and sensed data

transmission. Therein, a fraction of the total completion time is spent for energy

harvesting operation, which is controlled by the harvesting-time ratio denoted by

0 6 ρ 6 1, such that TH = ρT . Accordingly, the rest of the time is spent in

sensing, compression and transmission processes Tsen + Tcp + Ttx = (1 − ρ)T , as

illustrated in Fig. 3.2. Moreover, the system requires specific QoS in terms of

data reliability and delivery time. This imposes a constraint in terms of the delay

bound, which mandates that the cumulative completion time of the MTC node’s

operations, must meet the deadline, T . Moreover, the system imposes another

probabilistic constraint on the successful data delivery. Specifically, the data should

be successfully delivered with probability equal to a given value, denoted by δ.

The channel varies independently in different time blocks. In a given time

block, if the channel is in deep fade, the required level of energy to transfer, EHAP,

would be too high to achieve the given system performance. This high energy cost

might be infeasible for a loss tolerant system, a typical case in sensor networks.

Moreover, when the channel is in deep fade, the delay bound may also hinder the

HAP to transfer the required amount of energy and the MTC node may not be

able to complete all of its operations within the given deadline. Also, when the

channel is in deep fade, the MTC node would not be able to harvest enough energy

to perform its operations within the deadline, referred to as the energy outage.

The probability distribution function of the instantaneous channel gain, |h|2, is

exponentially distributed and is given as

f
(
|h|2
)
,

1

λ
exp

(
− |h|2 1

λ

)
, |h|2 > 0, (3.9)

where λ is the scale parameter of the probability distribution.

To minimize HAP’s transmitted energy, EHAP, under given data delivery con-

straint, the best strategy is to exploit the channel diversity in different time blocks.

Therein, the system is operated only when the channel gain is larger than a spe-

cific value, denoted by Θ, which satisfies the probabilistic data delivery constraint.
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Accordingly, the value of Θ can be computed using the following expression

P
{
|h|2 > Θ

}
= δ. (3.10)

The left hand side of the above equation represents the complimentary cumulative

distribution function (CCDF) for |h|2. For the considered Rayleigh fading channel,

the fading power gain, |h|2, is exponentially distributed, which yields

1−
[
1− exp

(
−Θ

1

λ

)]
= δ. (3.11)

Solving the above equation for Θ yields

Θ = −λ ln
(
δ
)
.

Hence, in a given time block if channel gain is lower than the threshold value,

i.e., |h|2 < −λ ln(δ), then HAP simply informs the MTC not to perform any of its

operations and, for simplicity, we ignore the energy consumed by this action from

the HAP.

3.2.1 Optimal Design Policies for the MTC Node

When the channel condition is good enough to preclude the energy outage, i.e.,

|h|2 > −λ ln(δ), the HAP transmits the power beacon and the MTC node performs

all of its operations. This is referred to as an active time block.

Considering the operations at the MTC node, we optimize the harvesting-time,

ρMTC, compressed data size, Dcp, and transmitted power, PIT, for a wireless pow-

ered MTC node to minimize HAP’s transmitted energy, EHAP, under given system

constraints. We devise the optimal design considering the worst-case channel con-

dition that is possible in an active time block, i.e., |h|2 = −λ ln(δ). It is because

the instantaneous CGI is not available at the MTC node, and therefore MTC node

cannot adapt design parameters to different channel conditions in different time

blocks. The worst-case channel based design ensures that the required system per-

formance would be met in all active time blocks using the fixed design parameters.

Minimizing ρMTC actually minimizes EHAP, because T and PPT are both fixed
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parameters. Thus, solving the following problem, for given channel realization

|h|2 = −λ ln(δ), yields optimal MTC node design parameters

minimize
ρMTC, PIT, Dcp

ρMTC

subject to ϑDPsen + τDPcp

( D

Dcp

)β
− τDPcp +

Dcp

B log2

(
1−κλ ln(δ)PIT

σ2dαΓ

)(PIT

µ
+Po

)
6 −ηρMTCT

(κλ ln(δ)PPT

rα
+Pth

)
,

ϑD + τD
( D

Dcp

)β
− τD +

Dcp

B log2

(
1−κλ ln(δ)PIT

σ2dαΓ

) 6 (1− ρMTC

)
T,

0 6 ρMTC 6 1,

PIT > 0,

Dmin 6 Dcp 6 D.

(3.12)

where Dmin is the lower bound on the compressed data size and its value depends

on the nature of the data and the system application. The first constraint in

(3.12) mandates that the harvested energy by MTC node must be large enough

to cover the cumulative energy cost of its operations. The second constraint in

(3.12) mandates that the completion time for all the MTC nodes’ operations must

meet the delay bound. The remaining constraints reflect practical range of values

for harvesting-time ratio, ρMTC, MTC node’s transmitted power, PIT, and the

compressed data size, Dcp.

The solution to (3.12) yields optimal MTC node design parameters ρ∗MTC, P
∗
IT, D

∗
cp

to be used by the MTC node in all active time blocks. Substituting the values of

P ∗IT and D∗cp in (3.8), yields the fixed optimal minimal E∗MTC

(
P ∗IT, D

∗
cp

)
value which

is used in all active time blocks.

It can be shown that the problem defined in (3.12) is non-convex, because the

first constraint is non-convex in PIT. By substitution of variable ln
(
1−κλ ln(δ)PIT

σ2rαΓ

)
=

z in (3.8), EMTC can equivalently be defined as

EMTC

(
z,Dcp

)
= ϑDPsen + τDPcp

( D

Dcp

)β
− τDPcp +

Dcpb

z

(
exp(z) + c

)
. (3.13)

where a = −κλ ln(δ)
σ2rαΓ

, b = ln(2)
µaB

, c = µaPo − 1.
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Accordingly, the problem defined in (3.12) can equivalently be given as follows

minimize
ρMTC, z,Dcp

ρMTC

subject to ϑDPsen + τDPcp

( D

Dcp

)β
− τDPcp +

Dcpb

z

(
exp(z) + c

)
6 −ηρMTCT

(κλ ln(δ)PPT

rα
+Pth

)
,

ϑD + τD
( D

Dcp

)β
− τD +

Dcp ln(2)

Bz
6
(
1− ρMTC

)
T,

06 ρMTC6 1,

z>
2

ln(2)
,

Dmin6Dcp6D.

(3.14)

For brevity we omit the proof, however using basic calculus and with some

algebraic manipulation, it can be shown that the problem in (3.14) is a convex

optimization problem.

The solution to the optimization problem defined in (3.14) is given by the

following theorem.

Theorem 3. In solving the optimization problem in (3.12), the optimal MTC

node’s transmitted power is given by

P ∗IT =

P̃ IT, if Q(P̃ IT, D̃cp) < (1− ρ̃MTC)T.

P̂ IT, otherwise.
(3.15)

where P̃ IT is given as

P̃ IT =
1

a
exp

(
W0

(
exp

(
ln(c)− 1

))
+ 1
)
− 1

a
, (3.16)

where W0(·) is the principle branch of the Lambert W function. P̂ IT is given by the

solution of the following equation which can be solved numerically using Bisection

method
Tsen

P−1
sen

+
τDβ+1

P−1
cp D̂

β
cp

+
D̂cpb

(
1+aP̂ IT+c

)
ln
(
1+aP̂ IT

) +
ηTd

ρ̂−1
MTC

=
τD

P−1
cp

, (3.17)
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and the optimal compression ratio is given by

D∗cp

D
=


D̃cp

D
, if Q(P̃ IT, D̃cp) < (1− ρ̃MTC)T.

D̂cp

D
, otherwise.

(3.18)

and the optimal MTC node’s harvesting-time ratio is given by

ρ∗MTC =

ρ̃MTC, if Q(P̃ IT, D̃cp) < (1− ρ̃MTC)T.

ρ̂MTC, otherwise.
(3.19)

where
D̃cp

D
=

(
τβPcp ln(1+aP̃ IT)

b
(
1+aP̃ IT

)
+ bc

) 1
β+1

, (3.20)

D̂cp

D
=

(
τβ
(
T−1Λ̂−1

1 +ηd−Pcp

)
ln(1+aP̂ IT)

Λ̂−1
1 ln(2)

TB
+ηd ln(2)

B
−b(1+aP̂ IT)−bc

) 1
β+1

, (3.21)

ρ̃MTC=
1

ηTd

(
τD

P−1
cp

−Tsen

P−1
sen

− τDβ+1

P−1
cp D̃

β
cp

−D̃cpb(1+aP̃ IT+c)

ln
(
1+aP̃ IT

) )
, (3.22)

ρ̂MTC =
1

T

(
T − Tsen −

τDβ+1

D̂β
cp

+ τD − D̂cp ln(2)

B ln
(
1+aP̂ IT

)). (3.23)

Q(P̃ IT, D̃cp) , Tsen +
τDβ+1

D̃β
cp

−τD+
B−1D̃cp ln(2)

ln
(
1 + aP̃ IT

) , (3.24)

Λ̂1=
T−1B−1 ln(2)

b
(

ln
(
1+aP̂ IT

)
−1
)(

1+aP̂ IT

)
−bc−ηdB−1 ln(2)

. (3.25)

Proof. The proof is provided in Appendix D.1. �

Following remark discusses an insight from Theorem 3.

Remark 9. P̃ IT, D̃cp, ρ̃MTC provide an upper bound on the HAP’s energy cost

in any active time block, ρ∗MTCTPPT, and are optimal design parameters when all

constraints in (3.12) are slack, i.e., Q(P̃ IT, D̃cp) < (1 − ρ̃MTC)T , except the first

constraint. On the other hand, P̂ IT, D̂cp, ρ̂MTC are optimal design parameters,

when all constraints in (3.12) are slack except for the first and second constraint.
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3.2.2 Optimal Design Policies for the HAP

Finally, we can relate the design for the MTC node, given in Theorem 3, to deter-

mine the HAP’s optimal design. The MTC node employs a fixed harvesting-time

ratio ρ∗MTC, defined in (3.19), in all active time blocks. ρ∗MTC is determined based

on the worst-case channel condition due to the unavailability of instantaneous CGI

at the MTC node. This design yields the upper bound on the HAP’s energy cost in

any active time block, i.e., Eub
HAP = ρ∗MTCTPPT. However, the instantaneous CGI

is available at the HAP, thus it can adapt the harvesting-time for different channel

conditions in different active time blocks. Accordingly, the actual harvesting-time

used by the HAP to transfer power is given by ρ∗HAPT , where ρ∗HAP 6 ρ∗MTC is

defined as

ρ∗HAP

(
|h|2
)
,

E∗MTC

(
P ∗IT, D

∗
cp

)
ηT
(
κ|h|2r−αPPT+Pth

) . (3.26)

where |h|2 > −λ ln
(
δ
)

is the instantaneous channel gain in an active time block.

Note that the actual harvesting-time, ρ∗HAP, is almost always less than ρ∗MTC.

Lastly, the minimal HAP’s transmitted energy is given as

E∗HAP = ρ∗HAPTPPT. (3.27)

The system model considers that the MTC node lacks the ability to store energy

for later blocks which makes it more cost efficient and helps keep the size of the

device small. To minimize MTC node’s and HAP energy cost, the HAP only

transfers the amount energy that is the minimum energy required by the MTC

node to perform its operations. Accordingly, there will be no energy left at the

MTC node at the end of the block to accumulate in the later blocks. For this

reason, there is no need to enable the MTC node to store energy for next blocks.

3.3 Numerical Results

In this section, we present the numerical results to observe the performance of the

proposed scheme. Unless specified otherwise, the values adopted for the system

parameters are shown in Table 3.1. Note that we assume realistic values, consistent

with prior works, for EH [63] and sensing, compression, transmission operations.
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Table 3.1: System parameter values.

Name Symbol Value
RF-EH sensitivity threshold Pth -30 dBm
Energy transducer efficiency η 0.5

Pathloss exponent α 3
Sensing power cost Psen 70 mW

Power amplifier efficiency µ 0.35
Antenna gain G 10

Compression power cost Pcp 24 mW
Compression cost parameter β 5

Bandwidth B 2 MHz
HAP transmitted power PPT 40 dBm
Per bit processing time τ 3.9 ns/b

Noise power density N0 -174 dBm
Radio circuitry power Po 82.5 mW

CGI’s pdf scale parameter λ 1
Data size D 200 bits

Data delivery probability δ 0.80
Per bit sensing time ϑ 37 ns/b

Distance r 10 m
Min. compressed data size Dmin 0.5×D
Modulation gap parameter Γ 0 dB

Wavelength ν 0.125 m

Baseline scheme: To illustrate the advantage of joint optimization of harvesting-

time ratio, compression and transmission rate, we also consider a baseline scheme

which minimizes EHAP by optimizing harvesting-time ratio and transmission rate

only (no data compression is employed) whilst satisfying the system constraints.

This problem can be given by substituting Dcp = D in (3.12). The optimal MTC

node’s transmitted power, denoted by P ∗IT,nc, and harvesting-time ratio, denoted

by ρ∗MTC,nc, for the baseline scheme can be obtained using Proposition 1.

Proposition 4. The optimal MTC node’s transmitted power, without employing

compression, is given by

P ∗IT,nc =


P̃ IT,nc, if Tsen+ B−1D ln(2)

ln
(

1+aP̃ IT

) < 1−ρ̃MTC,nc

T−1 .

P̂ IT,nc, otherwise.
(3.28)
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where

P̃ IT,nc =
1

a
exp

(
W0

(
exp

(
ln(c)− 1

))
+ 1
)
− 1

a
, (3.29)

P̂ IT,nc =
1

a
exp

(
u

v
−W0

(
− bD
ηdv

exp
(u
v

)))
−1

a
, (3.30)

where u = cbD
ηd
− D ln(2)

B
and v = Tsen − TsenPsen

ηd
− T . The optimal harvesting-time

ratio is given by

ρ∗MTC,nc =


ρ̃MTC,nc, if Tsen+ B−1D ln(2)

ln
(

1+aP̃ IT

) < 1−ρ̃MTC,nc

T−1 .

ρ̂MTC,nc, otherwise.
(3.31)

where

ρ̃MTC,nc = − 1

ηTd

(
TsenPsen +

Db(1+aP̃ IT,nc+c)

ln
(
1+aP̃ IT,nc

) )
, (3.32)

ρ̂MTC,nc =
1

T

(
T − Tsen −

D ln(2)

B ln
(
1+aP̂ IT,nc

)). (3.33)

Proof. The proof follows similar steps as the proof of Theorem 3, substituting

Dcp = D. For brevity, we omit it. �

Note that, E∗HAP is now only proportional to E∗MTC, since all other parameters

in (3.26) and (3.27) are same for both the schemes. Thus, we focus on the MTC

node’s performance.

3.3.1 Advantage of Proposed Scheme

Fig. 3.3 plots the MTC node’s energy cost, EMTC, versus the delay constraint, T ,

for system parameters in Table 3.1. EMTC is plotted using the optimal MTC node

design parameters for the proposed scheme, when it employs data compression,

and for the baseline scheme, when compression is not employed.

The MTC node’s energy cost, EMTC, is fixed for all active time-blocks, however

the energy of the HAP is different for different active time block. Nevertheless,

the HAP enjoys a constant performance gain (decrease in its energy cost) when

the MTC node employs data compression. We can see that the gain compared to

the baseline scheme is significant - up to 19% for the considered range of delay
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Figure 3.3: MTC node’s energy cost vs. delay and performance gain achieved by
HAP when MTC node employs compression.
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constraint. This shows the advantage of employing compression and jointly opti-

mizing harvesting-time ratio, compression and transmission. In both the cases, the

performance gain straightens out when the upper-bound on the transmission time

is achieved. This bound means that increasing the transmission time, by reducing

the transmission rate further, would not decrease the energy cost of the MTC node.

3.3.2 Impact of Delay Constraint

Fig. 3.4 plots the transmission rate and compression ratio, and the MTC node’s op-

erational timing, versus the delay constraint, T , for system parameters in Table 3.1.

We can see that the transmission rate requirement is significantly higher for the

baseline scheme. However, in the proposed scheme the rate is almost constant and

the compression ratio is adapted to the delay constant. Once the upper-bound on

the transmission time is reached, both schemes do not need to change the design

parameters to adapt to the delay constraint. Thanks to the data compression, this

upper-bound value is relatively smaller for the proposed scheme. Thus, employ-

ing compression notably decreases the transmission rate requirement at the MTC

node.

For the proposed scheme, the timing information for different operations of

the MTC node in an active time block is given in Table 3.2. The percentage

of time dedicated for the power transfer operation is 99%, 93%, 80%, for delay

bound values 1 s, 1.5 s, 2 s, respectively. Hence, due to the inherent limited efficiency

of the RF-EH process, specifically when the delay constraint is stringent, almost

all the active time-block is dedicated for the power transfer operation. On the

other hand, the time available for the MTC node to perform its operations is

20µ s, 101 ms, 391 ms, for delay bound values 1 s, 1.5 s, 2 s, respectively. Note that

only 97.78%, 0.014%, 0.0037%, of the available time is actually spent by the MTC

node, for delay bound values 1 s, 1.5 s, 2 s, respectively. Thus, the actual spent time

is very small and most of the time is spent on the RF-EH process. This is because,

the design considers worst-case channel due to the lack of instantaneous CGI at

the MTC node. For practical parameter values, the results in Table 3.2 confirm

the feasibility and provide insights into the actual operation of a RF-EH powered

MTC node.



3.3 Numerical Results 69

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
34

35

36

37

38

39

40

41

Delay constraint: T (s)

T
X

R
a
te

:
R

∗
(M

b
p

s)

P∗
IT in (3.15)

P∗
IT,nc in (3.28)

0.5

0.55

0.6

0.65

0.7

0.75

C
o
m

p
re

ss
io

n
ra

ti
o
:

D
∗ c
p

D

D∗
cp
D

in (3.18)

Figure 3.4: MTC node’s optimal transmission rate and compression ratio, vs. delay
bound.

Table 3.2: MTC node’s operational timing vs. delay bound.

T (s) ρ∗MTCT (s) Tsen (µs) T ∗cp (µs) T ∗tx (µs) Tsen+T ∗cp+T ∗tx (µs)

1 0.999 7.400 8.696 3.458 19.555

1.5 1.399 7.400 2.504 4.373 14.277

2 1.609 7.400 2.502 4.374 14.275
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3.4 Summary

We investigated the joint WPT and WIT policies, employing data compression, to

minimize the energy transferred by the HAP under given system constraints. For

practical parameter values, the joint optimization performs significantly better than

only optimizing harvesting-time ratio and transmission rate without compression.

Specifically, the gain is relatively large, up to 19%, when the delay constraint is

stringent. Due to the lack of instantaneous CGI at the MTC node the design

considers a worst-case channel, thus most of the total time is dedicated to RF-EH

when the delay constraint is stringent.



Chapter 4

Multi-User Sequencing and

Scheduling Control for

Time-Division Multiple Access

Systems

In this chapter, we consider a network scenario is applicable to a multi-user single-

channel sparse/massive machine-type communication (MTC) system. In such a

system, all machine-type devices (MTDs) share a single channel and sequentially

transmit data on this channel. The data may be generated or sensed by the MTD

periodically, on demand, or due to the occurrence of an event of interest. The data

is to be delivered under given reliability and delay conditions. The source from

which the data is acquired and the time spent on its acquisition is not relevant to

the TDMA sequencing and scheduling design. Moreover, the MTDs are battery

powered and perform duty cycling as well as deep sleep operation. This network

scenario cover high reliability and low-latency MTC systems For this network sce-

nario, the communication policies for all MTDs are jointly devised for given system

parameters.

The Internet of Things (IoT) is largely based on the uplink communication from

heterogeneous and autonomous wireless devices such as sensors, actuators which

are often referred to as MTC devices [3, 5]. Due to their wireless and unattended

71
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operation, MTC devices are mostly battery operated and thus severely energy-

constrained. The energy efficient operation of these devices is therefore of pivotal

importance [26]. Specifically, wireless communication is one of the most energy-

intensive operations run by the MTC devices and this calls for effective wireless

solutions to prolonging the device lifetime [26].

In this chapter, we propose joint sequencing and scheduling optimization for

uplink MTC. We consider multiple energy-constrained MTC devices that transmit

data to a base station following the time division multiple access (TDMA) protocol.

Conventionally, the energy efficiency performance in TDMA is optimized through

multi-user scheduling, i.e., changing the transmission block length allocated to

different devices. In such a system, the sequence of devices for transmission, i.e.,

who transmits first and who transmits second, etc., has not been considered as it

does not have any impact on the energy efficiency. In this chapter, we consider

that data compression is performed before transmission and show that the multi-

user sequencing is indeed important. We apply three popular energy-minimization

system objectives, which differ in terms of the overall system performance and

fairness among the devices. We jointly optimize both multi-user sequencing and

scheduling along with the compression and transmission rate control.

This chapter is organized as follows. The system model is presented in Sec-

tion 4.1. The proposed multi-user sequencing and scheduling problems for differ-

ent system objectives are formulated in Section 4.2. The problem transformation

and its solution strategy are presented in Section 4.3. The sub-optimal scheme is

presented in Section 4.4. Numerical results are presented in Section 4.5. Finally,

Section 4.6 concludes the chapter.

4.1 System Model

We consider a system consisting of multiple MTC devices transmitting data packets

to a BS, as shown in Fig. 4.1. The devices are battery-operated and energy-

constrained, whereas the BS has no energy constraint. Each device has a data

packet of a specific length and the data packets of all devices need to be transmitted

within a frame of length Tframe seconds. The devices employ the TDMA channel

access mechanism for data transmission, as shown in Fig. 4.2. We assume perfect
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Figure 4.1: Illustration of the considered system model comprising multiple MTC
devices and a base station. (CP = data compression, TX = data transmission)

synchronization among devices, which is in line with recent works [37, 66–68, 88].

The devices that have data to transmit, contend for the channel by transmitting a

control packet, and the BS then grants channel access to N devices, i.e., allocates

transmission blocks to N devices. As the details of channel contention mechanism

are outside the scope of this paper, interested readers are referred to [100] for more

information.

The BS determines the TDMA sequence and schedule and allocates the non-

overlapping frame segments (referred to as the transmission blocks) to individual

devices. Each device is allocated a single transmission block. Both the sequence

and schedule of the transmission blocks are shared with the devices by the BS

before the start of the frame. Each device applies data compression before the

start of its scheduled transmission block and then transmits the compressed data

in the allocated transmission block, as shown in Fig. 4.2. The device allocated

with the first transmission block in the frame performs both the data compression

and transmission operations within its allocated transmission block. Note that

the transmission block length can be different for different devices. Moreover, a

device may not necessarily use all of its allocated time for compression and/or
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transmission.

For an energy-efficient operation, the devices allocated with transmission blocks

are kept in power saving state when they are neither compressing nor transmitting

data. We assume that the power consumed by the device in power saving state is

negligible [46,47].

Channel model: The BS and all the devices are equipped with an omnidirec-

tional antenna. The devices are located at arbitrary distances from the BS. The

distance between the ith device and the BS is di meters. The channel between

each device and the BS is composed of a large-scale path loss, with path loss expo-

nent α, and a small-scale quasi-static frequency-flat Rayleigh fading channel. The

fading channel coefficient for the ith device is denoted as hi. We assume that the

channel response/coefficient remains unchanged over one frame. For static network

devices, as in our case, the coherence time is of the orders of 100 ms for sub-GHz

carrier frequencies (typically < 6 GHz) and the channel can be predicted with high

accuracy [101]. The noise is assumed to be additive white Gaussian noise (AWGN)

with zero mean and variance σ2. The noise spectral density is given by N0. The

probability distribution function (pdf) of the instantaneous channel gain, |hi|2, is

exponentially distributed as

f
(
|hi|2

)
,

1

ς
exp

(
− |hi|

2

ς

)
, |hi|2 > 0, ∀ i ∈ {1, 2, · · ·, N}, (4.1)

where ς is the scale parameter for the pdf . We assume that the instantaneous

channel gain for each device is perfectly estimated by the BS, which is inline with

the relevant prior works [37, 66, 67, 99]. Note that the energy portion split by the

devices for pilot signal transmission does not affect the design of the multi-user

sequencing and scheduling. Thus, we ignore this energy cost. However, the pilot

signal transmission energy cost can straightforwardly be added in the final system

energy cost.

MTC device sequencing and scheduling: In response to the channel ac-

cess requests, the BS broadcasts a control packet which contains the sequence and

schedule of the device transmission blocks and the optimal compression and trans-

mission parameters for each device.
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Figure 4.2: Timing diagram for the compression and transmission processes within
a frame of uplink MTC. For simplicity, this figure only shows the scenario with the
same block length.

The frame duration, Tframe, is divided into N transmission blocks as

Tframe =
N∑
n=1

Tn, (4.2)

where Tn is the duration of nth transmission block.

In conventional settings, only the length of the transmission blocks affects the

energy efficiency performance of a TDMA-based system. On the other hand, the

sequence of the transmission block has no affect on the performance. In our case,

however, the devices perform data compression before transmission. As a result,

a device allocated with a later transmission block has more time to perform data
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compression as compared to a device allocated with an earlier transmission block.

Therefore, the position of the transmission block, which depends upon the multi-

user sequence, influences the achievable energy efficiency performance.

Let us define xn,i as:

xn,i =

{
1, if the nth transmission block is allocated to the ith device,

0, otherwise.
(4.3)

As each transmission block is allocated to only one device, we have

N∑
i=1

xn,i = 1, ∀n. (4.4)

Also, each device is assigned only one transmission block, implying that

N∑
n=1

xn,i = 1, ∀ i. (4.5)

Compression: Before the start of its allocated transmission block, a device

applies data compression on the raw data, as shown in Fig. 4.2. For the ith device,

the Di bits of raw data is compressed into Dcp,i bits, resulting in a compression

ratio of
Dcp,i

Di
. The compression time, Tcp,i, is defined as the time required by the ith

device to compress the raw data, Di, into the compressed data, Dcp,i. We employ

a generic non-linear compression cost model as proposed in [48]. The parameters

of this compression model can be determined off-line for a given compression algo-

rithm using data fitting. Specifically, the performance of this compression model is

validated for the JPEG and JPEG2000 compression algorithms in [48]. Thereby,

the compression time, Tcp,i, is given as a function of compression ratio,
Dcp,i

Di
, as

Tcp,i = τDi

(( Di

Dcp,i

)β
− 1
)
, (4.6)

where τ is the per-bit processing time and β is a compression algorithm dependent

parameter that is proportional to the compression algorithm’s complexity. τ de-

pends upon the MCU processing resources and the number of program instructions
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executed to process one bit of data. β determines the time taken to achieve a given

compression ratio and is calculated off-line for a specific compression algorithm

and a given hardware configuration. Let Pcp be the power consumed by a device

during the data compression process. Pcp is predefined and constant for a given

MTC device hardware.

Transmission: Once the compression process is complete, each device needs

to transmit its compressed data within the allocated transmission block. The

transmission time for the ith device, Ttx,i, depends upon its compressed data size,

Dcp,i, and its link transmission rate, Ri, as

Ttx,i =
Dcp,i

Ri

. (4.7)

Here, the transmission rate, Ri, is given as

Ri = B log2

(
1 +

γi
Γ

)
, (4.8)

where B is the bandwidth of the considered system, γi is the received signal-to-noise

ratio (SNR) for the ith device, and Γ characterizes the gap between the achievable

rate and the channel capacity due to the use of practical modulation and coding

schemes [37,60]. The received SNR for the ith device, γi, is defined as [82]

γi = κ
Pi|hi|2
σ2dαi

, (4.9)

where κ =
(
λ
4π

)2
is the path loss factor, λ is the wavelength, Pi is the transmit

power for the ith device. To compute the data transmission power cost Ptx,i for

the ith device, we adopt the practical model of [102]. The transmission power

cost is composed of two components: (i) the transmit power Pi and (ii) the static

communication module circuitry power Po, which accounts for the operation of the

digital-to-analog converter, frequency synthesizer, mixer, transmit filter, antenna

circuits, etc. Specifically,

Ptx,i =
Pi
µ

+ Po, (4.10)

where µ ∈ (0, 1] is the drain efficiency of the power amplifier.
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4.2 Optimal Multi-User Sequencing and Schedul-

ing Scheme

In this section, we first present the proposed multi-user sequencing and scheduling

scheme and formulate the main optimization problem. Next, we present the system

objectives and formulate the corresponding optimization problems.

The MTC devices perform two main operations (i) compression and (ii) trans-

mission, each having individual completion time and energy cost. Recall that the

device allocated with the first transmission block (T1) in the frame, performs both

the data compression and transmission operations within its allocated transmission

block, i.e.,

x1,iTcp,i + x1,iTtx,i 6 T1, ∀ i. (4.11)

For all other devices that are allocated the remaining transmission blocks, they can

apply data compression on the raw data during the period between the start of the

frame and the start of its allocated transmission block, as illustrated in Fig. 4.2.

This implies that the compression time for the ith device is upper bounded by the

following constraint

Tcp,i 6
n−1∑
k=1

Tk, ∀n>2, ifxn,i = 1,

or equivalently,
N∑
n=2

xn,iTcp,i 6
N∑
n=2

n−1∑
k=1

xn,iTk, ∀ i. (4.12)

One may ask the option of using part of the allocated transmission block for com-

pression. This is unnecessary once the scheduling scheme is optimized, because the

available time for compression for the device allocated into the (n + 1)th trans-

mission block is optimally controlled by optimizing the durations of all previous n

transmission blocks.

After compression, each device transmits the compressed data within the trans-

mission block allocated through multi-user scheduling. Accordingly, the transmis-

sion time for the ith device is upper bounded by the following constraint
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Ttx,i 6 Tn, ∀n>2, ifxn,i = 1,

or equivalently,
N∑
n=2

xn,iTtx,i 6
N∑
n=2

xn,iTn, ∀ i. (4.13)

The formulated problem allows fully flexible multi-user scheduling and thus

there is no need to allow the associated devices to use some portion of the sec-

ond and later transmission blocks for compression. Our design ensures that the

length of the second and later transmission blocks does not go unnecessarily under

utilized, if it is beneficial to have a longer compression time. This is achieved by

allocating more compression time to the devices allocated the second or later trans-

mission blocks by controlling the length of the first transmission block. Thereby,

the extension in the length of first transmission block, beyond its associated de-

vice’s need, reduces the length of the other transmission blocks to give more time

for compression.

Each device needs to know the following parameters for its operation: (i) the

starting time for its compression and transmission processes, (ii) the processing

time allowed for its compression and transmission processes, (iii) the optimal com-

pression ratio, and (iv) the optimal transmission rate. In the considered system,

the multi-user scheduling mechanism ensures there is no gap or overlap between

individual transmission blocks allocated to different devices. Therefore, the start-

ing time of both compression and transmission processes for all the devices can

be determined using the starting time of the frame, the length of transmission

blocks and the multi-user sequence. The starting time for compression process

for all devices is equal to the starting time of the frame. The starting time for

the transmission process is determined using the transmission block lengths and

the multi-user sequence. Note that the transmission rate of a device is controlled

through its transmit power.

4.2.1 General Optimization Problem Formulation

The main problem we address is to determine the optimal length of transmission

blocks allocated to devices (i.e., scheduling), the sequence of allocated transmission

blocks, the compression and transmission policies for all devices. The aim is to
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minimize some certain energy minimization objective (to be defined in the next

subsection), under given delay and power constraints. The energy cost of the ith

device is given as Ei = PcpTcp,i + Ptx,iTtx,i. Substituting the values for Tcp,i, Ptx,i

and Ttx,i from (4.6), (4.7), (4.10) here yields

Ei = PcpτDi

(( Di

Dcp,i

)β
−1

)
+

Dcp,i

B log2

(
1 + κPi|hi|

2

Γσ2dαi

)(Pi
µ

+ Po

)
. (4.14)

The main optimization problem for the proposed scheme is formulated as fol-

lows.

Po : minimize
Pi, Dcp,i, Tn,
xn,i, ∀n,i

E(E1, E2, · · ·, EN) (4.15a)

subject to
N∑
n=1

Tn = Tframe, (4.15b)

x1,iτDi

(( Di

Dcp,i

)β
−1

)
+ x1,i

Dcp,i

B log2

(
1+κPi|hi|

2

Γσ2dαi

) 6 T1, ∀ i, (4.15c)

N∑
n=2

xn,iτDi

(( Di

Dcp,i

)β
−1

)
6

N∑
n=2

n−1∑
k=1

xn,iTk, ∀ i, (4.15d)

N∑
n=2

xn,i
Dcp,i

B log2

(
1 + κPi|hi|

2

Γσ2dαi

) 6 N∑
n=2

xn,iTn, ∀ i, (4.15e)

N∑
i=1

xn,i = 1, ∀n, (4.15f)

N∑
n=1

xn,i = 1, ∀ i, (4.15g)

0 6 Pi 6 Pmax, ∀ i, (4.15h)

Dmin,i 6 Dcp,i 6 Di, ∀ i, (4.15i)

0 6 Tn 6 Tframe, ∀n, (4.15j)

xn,i ∈ {0, 1}, ∀n, i, (4.15k)
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where E(E1, E2, · · ·, EN) is the objective function imposed by the considered energy

minimization strategy to be defined in the next subsection. (4.15c), (4.15d) and

(4.15e) are obtained by substituting the values of compression and transmission

time from (4.6) and (4.7), in to inequalities (4.11), (4.12) and (4.13), respectively.

Pmax is the maximum transmit power constraint for each device. Dmin,i is the

lower bound on the compressed data size for the ith device. Thus, the maximum

compression that can be applied is given by the minimum compression ratio defined

as
Dmin,i

Di
∀ i. The maximum compression ratio depends on the nature of the data

and the system application. Note that a device may not fully utilize its allocated

transmission block, depending upon its optimal compressed data size and/or the

optimal transmission rate.

4.2.2 Considered System Objectives

In the literature, there are three popular system objectives for energy minimization,

which differ in terms of the overall system performance and fairness among the

MTC devices. These system objectives are (i) sum energy minimization, (ii) min-

max energy minimization, and (iii) proportionally-fairness energy minimization.

In the following, we discuss each of these system objectives and formulate the

corresponding optimization problems. The system model under investigation allows

the MTC devices to be located at various distances from the BS and experience

different path attenuation. Moreover, the channel gain fluctuates independently

for different devices in a given frame. This results in multi-user diversity due

to the difference in the signal power attenuation conditions. The purpose behind

different energy minimization objectives is to exploit this multi-user diversity while

considering the trade-off between the system energy cost and the level of fairness

in terms of energy cost of individual devices.

4.2.2.1 Sum energy minimization

The motivation behind the sum energy minimization objective is to prioritize the

system performance over fairness among the devices. This objective attempts to

achieve the maximum energy efficiency performance by fully exploiting the multi-

user diversity. The strategy followed is to minimize the overall energy cost of all
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the devices while ensuring each device completely transmits its data within the

frame duration. The energy-fairness among devices is not considered. Therein,

the devices with high signal power attenuation are provided with limited system

resources, thus spend more energy than other devices and vice versa.

Mathematically, the objective is to minimize the total energy cost of all the

devices in the given frame, i.e., minimize
∑N

i=1 Ei, where Ei is defined in (4.14).

Accordingly, for the sum energy minimization objective, (4.15) becomes:

Po
SUM : minimize

Pi, Dcp,i, Tn,
xn,i, ∀n,i

N∑
i=1

Ei
(
Pi, Dcp,i

)
subject to (4.15b) – (4.15k).

(4.16)

4.2.2.2 Min-max energy minimization

This system objective aims to prioritize fairness over system performance. It at-

tempts to guarantee fairness in terms of individual device energy cost while max-

imizing the overall system energy efficiency performance. In particular, the max-

imum value of the energy spent by a device is minimized. Thereby, each device

spends an equal amount of energy to transmit its data, irrespective of its signal

power attenuation conditions.

The objective is to minimize the maximum energy cost among the devices in

the given frame, i.e., minimize max
16i6N

{Ei}, where Ei is defined in (4.14). This

design strategy is Pareto-efficient [103], i.e., the energy cost of a device cannot be

further decreased without increasing the energy cost of another device. This system

objective provides strict energy fairness. For the min-max energy minimization

objective, (4.15) becomes:

Po
MM : minimize

Pi, Dcp,i, Tn,
xn,i,∀n,i

max
16i6N

{
Ei
(
Pi, Dcp,i

)}
subject to (4.15b) – (4.15k).

(4.17)



4.3 Problem Solution and Optimality 83

4.2.2.3 Proportionally-fair energy minimization

The sum energy minimization objective prioritizes the devices with better signal

power attenuation performance, thereby allocating more system resources to boost

their energy efficiency. As a result, the overall system energy efficiency performance

increases at the cost of energy-unfairness among the devices. On the other hand,

the min-max energy minimization objective targets strict energy fairness at the cost

of reduced overall system energy efficiency performance. The motivation behind

proportionally-fair energy minimization objective is to strike a balance between

the system energy efficiency and device energy-fairness. This objective achieves

some level of fairness among devices by providing each device with a performance

that is proportional to its signal power attenuation conditions. This is achieved by

reducing the opportunity of the devices with low signal power attenuation, getting

more share of system resources to the weak devices. More system resources are

allocated to the devices when their instantaneous signal power attenuation is low

relative to their own signal power attenuation statistics. Thereby, proportional-

fairness is achieved without compromising much energy efficiency performance.

Since the signal power attenuation fluctuates independently for different devices,

this strategy effectively exploits multi-user diversity. This can be achieved by

minimizing the sum of logarithmic energy cost function of the individual devices

[67,99,104], i.e.,
∑N

i=1 log(Ei), where Ei is defined in (4.14).

For the proportionally-fair energy minimization objective, (4.15) becomes:

Po
PF : minimize

Pi, Dcp,i, Tn,
xn,i,∀n,i

N∑
i=1

log
(
Ei
(
Pi, Dcp,i

))
subject to (4.15b) – (4.15k).

(4.18)

4.3 Problem Solution and Optimality

The optimization problem defined in (4.15) is a mixed-integer nonlinear program

which is non-convex in its natural form. Therefore, it is very challenging to de-

termine the globally optimal solution or even to determine if the globally optimal

solution exists [105]. In this regard, we first consider the binary variables to be
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deterministic (i.e., a known sequence) and transform the non-convex optimization

problem into convex sub-problems using methods that preserve equivalence. This

will prove that the globally optimal solution exists. Later, we propose an alterna-

tive problem modelling approach to handle the binary constraints, which targets

a more computationally feasible implementation. Therein, we perform transfor-

mations on the binary variables into real variables to get an approximate convex

program which can be solved with significantly lower complexity. Moreover, we

propose an iterative solution approach to push these real variables towards optimal

binary values, which correspond to the binary variables in (4.15). These strategies

are adopted for each of the considered objectives.

4.3.1 Existence of Globally Optimal Solution

For a fixed multi-user sequence
(
i.e., {xn,i, ∀n, i} is known

)
, problems (4.16), (4.17)

and (4.18) can be remodelled as the following sub-problems, respectively, which are

still non-convex in their natural form:

P̂SUM : minimize
Pi, Dcp,i, Tn, ∀n,i

N∑
i=1

Ei(Pi, Dcp,i)

subject to (4.15b) – (4.15e), (4.15h) – (4.15j),

(4.19)

P̂MM : minimize
Pi, Dcp,i, Tn, ∀n,i

max
16i6N

{
Ei(Pi, Dcp,i)

}
subject to (4.15b) – (4.15e), (4.15h) – (4.15j),

(4.20)

P̂PF : minimize
Pi, Dcp,i, Tn, ∀n,i

N∑
i=1

log
(
Ei(Pi, Dcp,i)

)
subject to (4.15b) – (4.15e), (4.15h) – (4.15j).

(4.21)

Lemma 1. For a given sequence, the optimization problems (4.19), (4.20) and

(4.21) can be transformed into corresponding equivalent convex problems. Thus, a

globally optimal solution exists for each of these problems (4.19), (4.20) and (4.21).

Proof. The proof is provided in Appendix D.1. �
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From Lemma 1, we have the following equivalent convex problems for (4.19),

(4.20) and (4.21), respectively:

Pso
SUM : minimize

Zi, Dcp,i, Tn,∀n,i

N∑
i=1

(
τDiPcp

(( Di

Dcp,i

)β
−1

)
+
Dcp,ibi
Zi

(
exp(Zi) + ci

))
(4.22a)

subject to (4.15b), (4.15i), (4.15j),

x1,iτDi

(( Di

Dcp,i

)β
−1

)
+ x1,i

Dcp,i

BZi
6 T1, ∀ i, (4.22b)

N∑
n=2

xn,iτDi

(( Di

Dcp,i

)β
−1

)
6

N∑
n=2

n−1∑
k=1

xn,iTk, ∀ i,

(4.22c)

N∑
n=2

xn,i
Dcp,i

BZi
6

N∑
n=2

xn,iTn, ∀ i, (4.22d)

0 6 Zi 6 Zmax, ∀ i, (4.22e)

Pso
MM : minimize

Zi, Dcp,i, Tn, ∀n,i
max

16i6N

{
τDiPcp

(( Di

Dcp,i

)β
−1

)
+
Dcp,ibi
Zi

(
exp(Zi) + ci

)}
subject to (4.15b), (4.15i), (4.15j), (4.22b) – (4.22e),

(4.23)

Pso
PF : minimize

Zi, Vi, Tn, ∀n,i

N∑
i=1

log

(
τDiPcp

(
Dβ
i

exp
(
βVi
)−1

)
+
bi exp

(
Vi
)

Zi

(
exp

(
Zi
)
+ci

))
(4.24a)

subject to (4.15b), (4.15j), (4.22e),

x1,iτDi

(
Dβ
i

exp
(
βVi
) − 1

)
+ x1,i

exp
(
Vi
)

ln(2)

BZi
6 T1, ∀ i,

(4.24b)

N∑
n=2

xn,iτDi

(
Dβ
i

exp
(
βVi
) − 1

)
6

N∑
n=2

n−1∑
k=1

xn,iTk, ∀ i, (4.24c)
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N∑
n=2

xn,i
exp

(
Vi
)

ln(2)

BZi
6

N∑
n=2

xn,iTn, ∀ i, (4.24d)

ln(Dmin,i) 6 Vi 6 ln(Di), ∀ i, (4.24e)

where bi =
Γσ2dαi ln(2)

µBκ|hi|2 , ci = µκ|hi|2Po

Γσ2dαi
−1, Zi= ln

(
1+κPi|hi|

2

Γσ2dαi

)
, Zmax = ln

(
1+κPmax|hi|2

Γσ2dαi

)
,

Vi = ln
(
Dcp,i

)
.

Let us consider the exhaustive search approach for the sake of proving the

existence of the globally optimal solution. Note that it is not adopted to actually

solve the proposed problems. In this search approach, we first find the globally

optimal solution for all possible multi-user sequence permutations for problems in

(4.19). Then, we determine which multi-user sequence minimizer and its associated

optimal solution gives the minimum objective value. This multi-user sequence and

solution is the globally optimal solution of problem (4.16). The same argument

applies to problems (4.17) and (4.18).

Lemma 2. The minimum of the globally optimal solutions of problems (4.19),

(4.20) and (4.21) for all possible sequences, {xn,i, ∀n, i}, is the corresponding glob-

ally optimal solution of problems (4.16), (4.17) and (4.18), respectively.

From Lemmas 1 and 2, the globally optimal solution for each of the mixed-

integer nonlinear programs in (4.16), (4.17) and (4.18), respectively, exists and can

be found.

4.3.2 Handling Binary Variables

In the following, we consider problem (4.16) and first apply transformation on

continuous variables as in (4.22). Next, we transform the binary variables into real

variables to get an approximate convex program. Let us first deal with the binary

variables xn,i ∈ {0, 1}, ∀n, i. Note that for a real variable xn,i ∈ [0, 1], we have

xn,i > x2
n,i, ∀n, i. To this end, we can write

xn,i ∈ {0, 1} ⇔ xn,i − x2
n,i = 0⇔

(
xn,i ∈ [0, 1] & xn,i − x2

n,i 6 0
)
, ∀n, i, (4.25)
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and adopt the approach of [106–109] to rewrite the constraint function (4.15k) as

N∑
n=1

N∑
i=1

(
xn,i − x2

n,i

)
6 0, (4.26)

0 6 xn,i 6 1, ∀n, i. (4.27)

In this way, we can relax the binary variables xn,i ∈ {0, 1}, ∀n, i, in (4.16) to

real variables xn,i ∈ [0, 1], ∀n, i, and introduce a cost function that penalizes the

objective in (4.16) to impose xn,i = x2
n,i, ∀n, i [107]. Therefore, the binary to real

variables transformation and the continuous variables transformation as in (4.22)

leads to the following equivalent problem

PR : minimize
Zi, Dcp,i, Tn,
xn,i, ∀n,i,

N∑
i=1

Ei(Zi, Dcp,i) + Λ
N∑
n=1

N∑
i=1

(
xn,i − x2

n,i

)
subject to (4.15b), (4.15i), (4.15j), (4.22b) – (4.22e), (4.27),

(4.28)

where Λ > 0 is a constant penalty factor. The term
∑N

n=1

∑N
i=1

(
xn,i − x2

n,i

)
in

(4.28) is the penalizing function on violation of the binary constraints over the

energy minimization objective. Its magnitude quantifies the degree of violation

from the binary constraints. Λ embodies the cost of this violation from the binary

values xn,i, ∀n, i. The minimizer of (4.28) will satisfy the binary constraints, xn,i ∈
{0, 1}, ∀n, i, for a finite value of Λ, i.e., the penalization is exact [105]. Thus, the

optimization problems defined in (4.16) and (4.28) are equivalent, and the same

optimal solution minimizes both the objective functions for a suitable value of the

penalty factor [107].

The non-negative term
∑N

n=1

∑N
i=1

(
xn,i − x2

n,i

)
in (4.28) decreases to 0 as

Λ → +∞. Ideally, we need this term to be zero, and for that we would have

to derive the optimal value of the penalty factor, Λ∗. For practical computational

feasibility, let us introduce a numerical tolerance level such that it is acceptable to

have
∑N

n=1

∑N
i=1

(
xn,i − x2

n,i

)
< ε, where ε is very small and Λ is sufficiently large.

Following [106] and [107], in our numerical experiments we found Λ > 200 is large

enough to satisfy a tolerance level of ε = 10−6 such that
∑N

n=1

∑N
i=1

(
xn,i−x2

n,i

)
6 ε.

Note that the penalty function in (4.28) is non-convex in xn,i, ∀n, i,. Consider
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a non-convex quadratic function g(x) , x − x2, where x ∈ [0, 1]. If we apply the

first-order Taylor series expansion at a given point x(j) ∈ [0, 1], we can obtain the

convex lower bound on g(x) as [109]

x
(
1− 2x(j)

)
+
(
x(j)
)2
6 x− x2. (4.29)

Similarly, the convex lower bound on the penalty function can also be given as

N∑
n=1

N∑
i=1

(
xn,i
(
1− 2x

(j)
n,i

)
+
(
x

(j)
n,i

)2
)
6

N∑
n=1

N∑
i=1

(
xn,i − x2

n,i

)
. (4.30)

Accordingly, for a given point x
(j)
n,i ∈ [0, 1], the global upper bound minimization

for problem (4.28) is given as

PUB
R : minimize

Zi, Dcp,i, Tn,
xn,i, ∀n,i,

N∑
i=1

Ei(Zi, Dcp,i) + Λ
N∑
n=1

N∑
i=1

(
xn,i
(
1− 2x

(j)
n,i

)
+
(
x

(j)
n,i

)2
)

subject to (4.15b), (4.15i), (4.15j), (4.22b) – (4.22e), (4.27).

(4.31)

4.3.3 Solution Approach

Algorithm 1 outlines the steps to find the solution to the nonconvex problem (4.16)

by iteratively solving a number of convex problem (4.31). In the first iteration,

j = 1, problem (4.31) is solved using the initially guessed points, x
(j)
n,i, ∀n, i. The

solution for the jth iteration x∗n,i, ∀n, i is used as an initial point for next iteration

j + 1. This process is repeated until convergence is achieved. The final solution

yields the optimal parameters for multi-user sequencing and scheduling and com-

pression and transmission rates for problem (4.16) due to its equivalence to problem

(4.31).

Lemma 3. Algorithm 1 converges to a Fritz John solution of problem (4.16).

Proof. The proof is based on [109], [110], [111] and it is provided in Appendix C.2.

�
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Algorithm 1 Iterative Approach for Multi-User Sequencing and Scheduling Op-
timization

1: Initialization: Set iteration count j = 0. Set initial point for x
(j)
n,i = 0.5, ∀n, i.

Select a reasonably high penalty value Λ = 200 and low tolerance value ε =
10−6.

2: while
∑N

n=1

∑N
i=1

(
x

(j)
n,i −

(
x

(j)
n,i

)2)
> ε do

3: Solve (4.31) using point x
(j)
n,i, ∀n, i and get solution parameters

Z∗i , D
∗
cp,i, T

∗
n , x

∗
n,i, ∀n, i.

4: Update point x
(j+1)
n,i = x∗n,i, ∀n, i

5: Update iteration count j = j + 1
6: end while

From Lemma 3, we know that the solution of (4.31) found through Algorithm 1

converges to a Fritz John solution of nonlinear problem (4.31). The convergence

to a Fritz John solution is a necessary condition for a solution to be optimal for a

non-linear program. Due to the equivalence between problems (4.31) and (4.16),

the solution by Algorithm 1 is an optimal solution for nonlinear problem (4.31)

and correspondingly it is also an optimal solution for problem (4.16).

Problem (4.31) is solved in each iteration of Algorithm 1 with a polynomial

computational complexity in the number of variables and constraints. Accord-

ingly, (4.31) can be transformed into an equivalent optimization problem such that

it contains nl=(5N+1) linear constraints, np=(3N) posynomial constraints, and

nb=(N2) real-valued scalar decision variables. Thus, solving (4.31) requires a com-

plexity of O
(√

nl+np[nl+np+nb]n2
b

)
[108].

It is noted that Algorithm 1 can be straightforwardly modified to solve prob-

lems (4.17) and (4.18) by first applying the continuous variables transformation as

in (4.23) and (4.24), respectively, and then following the same steps provided in

Section 4.3.2 for the binary variables transformation.

4.4 Sub-Optimal Multi-User Scheduling Scheme

In this section, we present the sub-optimal scheme that does not consider multi-

user sequencing optimization and the sequence is kept fixed. However, the multi-

user scheduling, data compression and transmission rate parameters are jointly
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optimized. The proposed optimal and sub-optimal schemes only differ in the con-

sideration of multi-user sequence optimization. Thus, the sub-optimal scheme is

proposed to illustrate the impact of multi-user sequencing. In Section 4.5, we will

perform a comparative performance analysis of these schemes to show the impact

of multi-user sequencing in a multi-user uplink communication system, which is the

main contribution of this work. Hence, the sub-optimal scheme serves an impor-

tant purpose. The three optimization problems are formulated for the sub-optimal

scheme considering the three different system objectives previously defined in Sec-

tion 4.2.2.

For the sub-optimal scheme, the multi-user sequence is fixed and unchanged

from one frame to the next. However, the transmission block length of any device

is flexible and can be optimized. In this scheme, the transmission rate, compression

ratio, and the transmission block length (multi-user scheduling) are jointly opti-

mized for the given energy minimization objective for a fixed multi-user sequence(
i.e., {xn,i, ∀n, i} is known

)
. For the considered system objectives, the optimiza-

tion problems for the sub-optimal scheduling scheme are given in (4.22), (4.23) and

(4.24).

4.5 Numerical Results

This section presents the numerical results to illustrate the performance of the

proposed scheme. Unless specified otherwise, the values for the parameters shown

in Table 5.1 are adopted.

Remark 10. Algorithm 1 is implemented in AMPL [112], which is popular for

modelling scheduling problems1. A model for the proposed problem is developed in

the AMPL environment and the Couenne (convex over and under envelopes for

nonlinear estimation) solver [113, 114] is used to solve the problem. The Couenne

solver guarantees the globally optimal solution if such a solution exists and we have

already proved its existence by Lemmas 1 and 2.

1To cross-check we compared AMPL-Couenne with CVX-sedumi/SDPT3 in geometric pro-
gramming (GP) mode. The CVX-GP mode requires additional transformations on (4.31) for
compliance. Nevertheless, the results match up to 6 decimal points.
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Table 4.1: System parameter values.

Name Symbol Value
Amplifier’s drain efficiency µ 0.35
Max. transmit power Pmax 0 dB
Scale parameter for channel gain ς 1
Wavelength λ 0.333 m
Compression processing power Pcp 24 mW
Number of devices N 5
Comm. module circuitry power Po 82.5 mW
Bandwidth B 1 MHz
Practical modulation power gap Γ 9.8 dB
Packet size Di {310,500,100,80,200} kbits

Minimum compression ratio
Dmin,i

Di
0.4

Distance di {40,15,31,49,22} m
Per-bit processing time τ 7.5 ns/b
Noise spectral density N0 −174 dBm
Compression cost parameter β 5
Pathloss exponent α 4

Let us define system energy cost as the total energy cost of all the devices, i.e.,∑N
i=1Ei. Moreover, the energy efficiency gain, Gee, provided by a given scheme

A over scheme B be defined as the percentage decrease in the system energy cost

of scheme B,
∑N

i=1Ei,B, in comparison to the system energy cost of scheme A,∑N
i=1Ei,A, and it is given as

Gee =

∑N
i=1Ei,B −

∑N
i=1Ei,A∑N

i=1Ei,B
. (4.32)

It should be noted that the relative performance of the sum, min-max, and

proportionally-fair energy minimization objectives has been well studied in previous

studies and thus it is not the focus of this paper. Our focus is rather to evaluate

the performance of the proposed joint optimization of multi-user sequencing and

scheduling scheme.

To the best of our knowledge, the recent works [37, 67, 68, 70] are the most

relevant to our proposed scheme. Although the system models in these works are

based on wireless power transfer, the underlying multi-user scheduling and trans-
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mission rate policy designs are similar to our considered system. In this regard,

we adopt the multi-user scheduling and transmission rate design policies proposed

by these schemes for our considered system model except that data compression

and multi-user sequencing are not employed. Moreover, when our considered sys-

tem is applied, the design problems proposed in [37, 67, 68, 70] can equivalently be

represented by the following benchmark scheme.

Benchmark scheme: For the benchmark scheme, the multi-user sequence is

fixed but the multi-user-scheduling can be optimized, i.e., the transmission block

length of each device is flexible. This scheme does not employ data compression.

The transmission rate and the transmission block length (scheduling) are jointly

optimized for the given energy minimization objective for a fixed sequence and

without employing data compression. The strategy followed to optimize the mul-

tiuser scheduling and device transmission rate policies for this benchmark scheme

is essentially the same as in the state of the art in [37,67,68,70]. The corresponding

optimization problems for the benchmark scheme are given in Appendix C.3. For

comparison with the proposed scheme, the same energy minimization objectives

are considered.

4.5.1 Validation

In this subsection, we carry out a comparative analysis of the proposed scheme with

the benchmark scheme (which represents existing state-of-the-art work). Fig. 4.3

plots the system energy cost,
∑N

i=1 Ei, versus the frame duration, Tframe, for the sys-

tem parameters in Table 5.1. The system energy cost is plotted with the proposed

optimal scheme and benchmark scheme for the sum, min-max, and proportionally-

fair energy minimization objectives in Fig. 4.3. The energy efficiency gain, Gee,

provided by the proposed optimal scheme over benchmark scheme is plotted in

Fig. 4.4. The performance for the sub-optimal scheme is also shown in Figs. 4.3

and 4.4 which we will discuss later. It can be seen from Fig. 4.4 that the gains are

almost the same irrespective of the considered energy minimization objective. In

the following, we will discuss system performance for the sum energy minimization

objective. Similar conclusions can be drawn for the min-max and proportionally-

fair energy minimization objectives.
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(a) Sum-energy minimization
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(b) Min-max energy minimization

Figure 4.3: System energy cost under given power constraints and system objec-
tives.
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(c) Proportionally-fair energy minimization

Figure 4.3: System energy cost under given power constraints and system objec-
tives.

When compared with the benchmark scheme, which does not employ data com-

pression, the proposed optimal scheme exhibits significant performance superiority.

This shows that employing both multi-user sequence and compression optimiza-

tion provides notable gains in the energy efficiency, specifically in the lower latency

regime. For the sum energy minimization objective, Fig. 4.4 shows that the gain

is comparatively significant (between 27% to 92%), for the considered range of

delay when the system is feasible for the benchmark scheme (between 150 ms to

80 ms). For the benchmark scheme, the device energy cost is reduced by adapt-

ing the minimum required transmit power level under given channel conditions.

However, reducing transmission rate through transmit power only helps up to a

certain level and any further reduction does not improve energy efficiency. Hence,

in general, it is not optimal to transmit at the lowest transmission rate. Note that

for the proposed optimal scheme the lower bound delay has a much smaller value

as compared to the benchmark scheme.
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4.5.2 Impact of Multi-User Sequencing

To illustrate the advantage of the proposed joint multi-user sequencing, we consider

the proposed optimal scheme and sub-optimal scheme for comparative analysis. In

both schemes, the multi-user scheduling and compression are optimized. However,

they differ in an important aspect that the multi-sequencing is employed by the

proposed optimal scheme and not by sub-optimal scheme, which uses a fixed multi-

user sequence.

From Fig. 4.3, the proposed optimal multi-user sequencing and scheduling

scheme clearly outperforms the sub-optimal scheme. Intuitively, it was expected

that the multi-user sequencing will always provide non-negative gains. However,

the gains are notable, between 13% to 35%, for the considered range of delay when

the system is feasible for the sub-optimal scheme as shown in Fig. 4.4, for the sum

energy minimization objective. Also, in the lower latency regime the gains are sig-

nificantly high, between 85 ms to 55 ms. Thus, for a less stringent delay constraint,

employing the multi-user sequencing will not pay off. At the same time, it can be

conclude that the data compression provides significant gains for all sorts of delay

constraints.

In addition, when the proposed optimal scheme is employed, the TDMA-based

multi-user transmissions is more likely to be feasible in the lower latency regime

subject to the given power constraints. That is, the proposed optimal scheme

can support much stringent delay requirements, under given maximum transmit

power constraints, as compared to the sub-optimal scheme for the same system

parameters. Note that in Fig. 4.3, the system energy cost flattens out as the delay

is increased further from a specific value for both schemes. The reason is that for

both proposed schemes, with joint data compression and transmission rate strategy,

there exists a lower bound on the device energy cost.

4.5.3 Impact of Scheduling Flexibility

Consider a scenario where the transmission blocks are fixed and are not changed

from one frame to the other. We illustrate the impact of multi-user scheduling

on the overall system performance and multi-user sequencing by allocating the

transmission blocks of the same length. That is, the frame duration, Tframe, is
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Figure 4.4: Energy efficiency gain performance vs. frame duration for the pro-
posed optimal scheme over the sub-optimal scheme and benchmark scheme, for the
considered system objectives.

divided into N equal transmission blocks and assigned to N devices. For this

scenario, we consider two cases:

• Case 1 : the multi-user sequence is fixed,

• Case 2 : the multi-user sequence can be optimized.

In both cases, the transmission rate and compression ratio are optimized for each

device under a given energy minimization objective. The corresponding optimiza-

tion problems for both these cases are given in Appendices C.4 and C.5, respec-

tively.

Fig. 4.5 plots the system energy cost,
∑N

i=1Ei, versus the frame duration, Tframe,

for the system parameters in Table 5.1. The system energy cost is plotted with

the proposed optimal scheme and Case 1 and Case 2 for the sum, min-max, and

proportionally-fair energy minimization objectives in Fig. 4.5. As can be seen, both

Case 1 and Case 2 perform similar. However, when the delay is stringent Case 2

performs significantly better than Case 1 due to multi-user sequencing. The energy
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Figure 4.5: System energy cost under given power constraints and system objec-
tives.
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Figure 4.5: System energy cost under given power constraints and system objec-
tives.

efficiency gain is between 11% to 45%, for the considered range of delay from 165

ms to 140 ms for the sum energy minimization objective.

When compared with the optimal scheme, a large performance degradation

is observed for the considered scenario when the transmission block lengths are

fixed. Thus, optimizing the multi-user sequencing provides a large performance

gain even in a restricted scheduling scenario. In addition, multi-user scheduling

flexibility when combined with multi-user sequencing has a significant impact on

the overall system performance. Similar conclusions can be drawn for the min-max

and proportionally-fair energy minimization objectives.

4.6 Summary

In this chapter, we have investigated the joint optimization of sequencing and

scheduling in a multi-user uplink machine-type communication scenario, consider-
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ing adaptive compression and transmission rate control design. The energy effi-

ciency performance is evaluated for three energy-minimization system objectives,

which differ in terms of the overall system performance and fairness among the

devices. Our results have showed that the proposed optimal scheme outperforms

the schemes without multi-user sequencing. The improvement in energy efficiency

observed is up to 35% when multi-user sequencing is optimized, under given max-

imum transmit power and delay constraints. In an alternate scenario, when the

length of the transmission blocks is fixed and equal for each device, multi-user se-

quence optimization still provides a performance gain of up to 45%. However, the

overall system performance degrades quite significantly. The energy efficiency gain

of multi-user sequence optimization is paramount under a stringent delay bound.

Thus, multi-user sequence optimization makes the TDMA-based multi-user trans-

missions more likely to be feasible in the lower latency regime subject to the given

power constraints.

In this chapter, we assumed that the instantaneous channel gain for each device

is perfectly estimated by the BS. In the more practical case of imperfect channel

estimation, outage occurs at the BS, and hence, an additional outage probability

constraint needs to be introduced into the optimization problem. Nevertheless,

the overall principle of the proposed multi-user sequencing and scheduling scheme

remains the same.

The proposed solution in this chapter is scalable to networks with massive

number of devices in two possible ways: (i) The TDMA based large networks with

massive number of devices are extensively handled in the prior studies through

clustering of devices that are spatially located in close proximity. Therein, all de-

vices within a cluster use a separate channel or sub-channel for data transmission

and the number of devices per frame are kept under control. (ii) For a different

scenario where a large number of devices need to share a single frame. The frame

can be divided into sub-frames each serving a controlled number of devices. The

sequencing and scheduling optimization can then be performed on sub-frames in-

stead of the whole frame. This will significantly reduce the complexity at the cost

of sub-optimal performance. It would be interesting to investigate this trade-off in

future works.





Chapter 5

Multi-User Transmit Power

Diversity in Contention

Resolution Diversity Slotted

ALOHA Systems

In this chapter, we consider a network scenario that is evolved from the network

scenario considered in chapter 4. However, due to lack of coordination among

devices, the machine-type devices (MTDs) randomly transmit short data-packets

on a shared channel. We consider a network scenario is applicable to a multi-user

single-channel massive machine type communication (MTC) system. In such a

system, all MTDs share a single channel and randomly transmit short data-packets

on this channel. The data may be generated or sensed by the MTD periodically,

on demand, or due to the occurrence of an event of interest that is to be delivered

under given reliability and delay conditions. This network scenario cover highly

reliability and dense MTC systems. For this network scenario, the communication

policies for all MTDs are jointly devised for given system parameters.

Motivated by the critical need to better support the MTC in future wireless

networks [3], contention resolution diversity slotted ALOHA (CRDSA) [39] and

its variants [115–117] have been proposed to enhance the performance of random

access schemes [118]. The well known idea of CRDSA is to allow devices to transmit

101
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multiple copies (burst) of the packet in randomly selected slots within a frame and

perform iterative successive interference cancellation (SIC) when attempting to

resolve collisions. However, most of these variants are based on the clean packet

model [39, 117] in which only interference-free packets are recoverable.

Contention resolution diversity slotted ALOHA (CRDSA) is a promising solu-

tion to meet the challenge of designing efficient random access in future wireless

networks. In this chapter, we consider CRDSA with transmit power diversity where

each packet copy from a device is transmitted at a randomly selected power level.

This results in inter-slot received power diversity, which is exploited by employing

a signal-to-interference-plus-noise ratio based successive interference cancellation

(SIC) receiver. Leveraging edge-weighted bipartite graph representation, we pro-

pose a novel graph-based message passing algorithm to model the SIC decoding. We

derive an expression to characterise the recovery-error probability of the scheme.

We also formulate and solve an optimization problem to determine the optimal

transmit power distribution.

This chapter is organized as follows. The system model is presented in Sec-

tion 5.1. The proposed random access mechanism is proposed in Section 5.2. The

recovery-error probability is derived in Section 5.3. The optimization problem for

the proposed scheme is formulated in Section 5.4. Numerical results are presented

in Section 5.5. Finally, Section 5.6 concludes the chapter.

5.1 System Model

We consider an uncoded slotted random access system with M machine-type com-

munication devices (MTDs), which contend to access a single base station (BS).

The time is divided into frames and each frame is divided into N equal duration

slots. The MTDs are frame and slot synchronized, e.g., using global positioning

system (GPS) or using periodic beacons transmitted by the BS [115]. Similar to

existing works [73,74,80], we assume that (i) both the large-scale fading and small-

scale fading coefficients are known perfectly to the BS. Hence, we do not consider

fading in this chapter, (ii) the BS knows the number of MTDs M [39,117] and (iii)

each MTD generates a single packet, which fits in exactly one slot, for transmission

in each frame. The system load G is defined as the normalised number of packets
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Figure 5.1: Illustration of proposed random access mechanism (SI = slot index).
The horizontal arrows represent the SIC iteration and the vertical arrows depict
the burst recovery in the next iteration. The dotted horizontal arrow shows that
SIC alleviated the interference power, yet the collision is not resolved.

per slot. Since, each device generates only one packet, G = M
N

.

5.2 Proposed Random Access Mechanism

5.2.1 Transmission Scheme

Similar to previous works on CRDSA, we assume that each MTD transmits d copies

(i.e., bursts) of its single packet in randomly and uniformly selected slots within

one frame, where 1 ≤ d ≤ D and D is the maximum number of allowable copies,

as shown in Fig. 5.1.

Different from existing works on CRDSA, in addition to the packet diversity

due to the copies, we allow transmit power diversity. Hence, each MTD randomly

chooses a transmit power level, El, for each of its copies from the set of equally

spaced L available power levels, denoted by E = {E1, E2, . . . , EL}, where 1 ≤ l ≤ L.

We allow selection of transmit power levels with replacement, i.e., two copies from

a MTD may be transmitted on the same power level. Note in Fig. 5.1 the transmit

power level is indicated with a color gradient.

Due to slot-level synchronization, copies of packets from different MTDs either
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completely overlap (i.e., collide) or not at all. Therefore, a single slot may contain

collided copies of packets from k MTDs, where 1 ≤ k ≤M . A collision free slot is

called a singleton slot and the packet is called a clean packet.

Let Λd denote the probability that a MTD transmits d copies, Ψk denote the

probability that k MTDs choose to transmit a copy on any given single slot and

Γl denote the probability that a MTD chooses power level El for a given copy.

According to [117], the polynomial representations for the probabilities Ψk, Λd,

and Γl are

Ψ (z) ,
∑
k

Ψkz
k,

Λ (z) ,
∑
d

Λdz
d,

Γ (z) ,
∑
l

Γlz
l.

(5.1)

5.2.2 Recovery Mechanism

The received signal at the BS in the nth slot is given by

yn = enxn + ωn, (5.2)

where n = 1, 2, . . . , N is the slot index, m = 1, 2, . . . ,M is the user index, en =[√
e1,n, . . . ,

√
em,n, . . . ,

√
eM,n

]
is the 1 × M vector of transmit power levels and

em,n ∈ E , xn = [x1,n, . . . , xm,n, . . . , xM,n]T is the M × 1 vector of transmitted

signals, where xm,n refers to one of the copies of the packet transmitted by the mth

MTD on the nth slot, and ωn is the additive white gaussian noise (AWGN) with

zero mean and variance σ2.

We assume that the BS employs SIC to iteratively recover each MTD’s packet.

For a given iteration of the SIC process, the BS first checks to see if any packet

in any slot can be successfully decoded. In this chapter, we consider that a packet

is successfully decoded if, at least in one of its copies, the received signal-to-

interference-plus-noise ratio (SINR) is above a threshold γth. We assume that each

copy contains the slot indices to all its copies so that once a packet is successfully

decoded, full information about the location of its copies is available. Hence, once

a MTD’s packet is decoded at the BS, the interference caused by that packet can
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be completely removed from all slots. This in turn increases the SINR of the re-

maining packets in the following iterations. The process is repeated until all MTD

packets are recovered or a maximum number of iterations imax is reached. This

repetition and SIC based decoding process at the BS is depicted with the help of

arrows in Fig. 5.1.

Let Mn denote the set of MTDs transmitting on the nth slot. Let Nm denote

the set of slots selected by the mth MTD for transmitting of its copies. We are

interested in the recovery-error probability, which is defined as the probability that

the BS fails to recover the mth MTD’s packet in the ith iteration of the SIC process.

It can be expressed as

q(i)
m = 1− P

{
max

{
γ(i)
m,n

}
> γth

}
, (5.3)

where P{·} denotes the probability, max{·} denotes the max operation, n ∈ Nm,

|Nm| = d, and γ
(i)
m,n is the SINR of the mth MTD in the ith iteration for its copy

transmitted with power level El in the nth slot, which is given by

γ(i)
m,n(El, u) =

El

Θ
(i)
m,n(u) + σ2

, (5.4)

where σ2 is the noise power and Θ
(i)
m,n(u) represents the cumulative interference

power from u unresolved MTDs. Note that q
(i)
m in (5.3) is the same for each MTD

device since the probabilities of selecting a transmission slot, power level and num-

ber of copies, respectively, are the same for all nodes.

Due to the max{·} operation, (5.3) is not tractable across iterations of the SIC

process. Hence, we employ graph based analysis to analyze γ(i). In this regard,

by defining an interference threshold ϕth(El) = El
γth − σ2, we can get the following

relationship which will be used in the subsequent analysis,

P
{
γ(i)
m,n(El, u) > γth

}
= P

{
Θ(i)
m,n(u) 6 ϕth(El)

}
. (5.5)
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Figure 5.2: Edge-weighted bipartite graph representation of the proposed scheme.

5.3 Recovery-Error Probability Analysis

5.3.1 Graph Representation

The system under consideration can be represented as an edge-weighted bipartite

graph and can be analysed using the theory of codes on graph [76, 117]. An ex-

ample graph, relative to Fig. 5.1, is illustrated in Fig. 5.2, where the MTDs and

slots are shown by circles and rectangles, representing burst nodes and sum nodes,

respectively.

An edge-weighted bipartite graph is defined by G = {B, S, EW}, where B, S,

and EW represent the sets of burst nodes (MTDs), sum nodes (slots), and edges

with weights, respectively. The edge weight Wm,n corresponds to the transmit

power level em,n ∈ E . The number of edges connected to a node represents the

node degree.

Let λd denote the probability that an edge is connected to a degree-d burst

node and ρk denote the probability that an edge is connected to a degree-k sum

node. According to [117], the definitions of λd and ρk can be given as

λd ,
Λdd∑
r Λrr

,

ρk ,
Ψkk∑
j Ψjj

,
(5.6)

where the probabilities Λd and Ψk are represented in (5.1).
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5.3.2 Message Passing Algorithm

We develop a graph-based message passing algorithm representation to track the

iterative SIC process in the proposed scheme.

The set of burst nodes transmitting on sum node Sn is equal to Mn and the

set of sum nodes selected by burst node Bm for burst transmission is equal to Nm.

The message S
(i)
n→m is sent by the sum node Sn to burst node Bm to advertise

the cumulative interference power Θ
(i)
m,n (defined below (5.4)) experienced in the

ith iteration due to the unresolved edges connected to it. On the graph, this

cumulative interference power is the sum of weights of all unresolved edges on a

given sum node. In response to the message S
(i)
n→m, a burst node Bm replies with a

message B
(i)
m→n. This message tells the sum node Sn whether the edge connected to

the burst node Bm should be removed or not. If the interference power is below the

interference threshold ϕth(Wm,n) (defined above (5.5)), which implies that the edge

can be removed, then the message B
(i)
m→n equals the interference power contributed

by Bm on sum node Sn, i.e., the weight Wm,n, is subtracted (edge is removed) from

the cumulative interference power on Sn and the updated interference power is

reported to the remaining unresolved burst nodes in the next iteration. Otherwise,

if the message B
(i)
m→n is zero then it implies that the edge cannot be removed

in the current iteration. This process is repeated until the maximum number of

iterations imax is reached or all burst nodes are recovered. Algorithm 1 summarizes

the proposed graph-based message passing algorithm representation of the iterative

SIC-based decoding process. Note that the developed message passing algorithm is

different from [40] due to the consideration of transmit power diversity and slot-wise

SINR based recovery in our work.

5.3.3 Derivation of Recovery-Error Probability

We derive the recovery-error probability using ANR-OR tree analysis technique.

The basic principle of this approach is to represent the graph as a tree and then

formulate q
(i)
m . In the ANR-OR process, an unknown edge of a burst node is

recovered if at least one of its edges are revealed (OR rule). Similarly, for a sum

node an edge is recovered in the given iteration if all other edges have been recovered

in prior iterations (AND rule).
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Figure 5.3: AND-OR tree.

We construct a tree using the edge-weighted bipartite graph G, as illustrated in

Fig. 5.3. The depth of the tree is twice the maximum allowed number of iterations

imax. A burst node is the root of the tree at depth 0. The children of a burst node are

those sum nodes which were chosen for the burst transmissions. Similarly, the sum

nodes have those burst nodes as children who chose them for burst transmissions.

A node at depth ζ has children in depth ζ + 1. Thereby, for the proposed random

access mechanism, burst nodes and sum nodes are located at depths 0, 2, 4, .., 2 imax

and 1, 3, 5, ..., 2 imax − 1, respectively. According to Algorithm 1, in each iteration

the burst nodes at depth ζ send the messages to their parent sum nodes at depth

ζ − 1 and the sum nodes send messages to their parent burst nodes at depth ζ − 2.

Note that a packet is lost if in the final iteration (imax) the message received by the

root burst node does not satisfy the SINR criterion. The probability of this event is

denoted by q(imax).

The following proposition gives the main result for q
(i)
m .

Proposition 5. In the asymptotic setting, as the number of slots N → ∞, the

recovery-error probability for a burst node Bm in the ith iteration, denoted by q
(i)
m ,
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Algorithm 2 Iterative SIC as a message passing algorithm

1: Initialization: i=0, B
(0)
n→m = 0, S

(0)
n→m = Θ

(0)
m,n ∀m,n.

2: for i > 0 && i 6 imax && S
(i)
n→m = 0 do

3: for n > 1 && n 6 N do
4: for Mn 6= {} do

5: In ith iteration sum node Sn sends a message S
(i)
n→m to burst node Bm,

∀m ∈Mn

S(i)
n→m = S(i−1)

n→m −
∑

m′∈Mn\Bm

B
(i−1)
m′→n

6: Within ith iteration, burst node Bm sends a message B
(i)
m→n to sum node

Sn, ∀n ∈ Nm

B(i)
m→n =

{
Wm,n, if S

(i)
n→m −Wm,n 6 ϕth

0, otherwise.

7: end for
8: end for
9: end for

is given by

q(i)
m =

D∑
d=1

Λd

(
1−

L∑
l=1

M−1∑
u=0

p(i)(u)P
{

Θ(i)
m (u) 6 ϕth(El)

}
Γl

)d
(5.7)

where Λd and Γl are defined in (5.1), P
{

Θ
(i)
m (u) 6 ϕth(El)

}
is defined in (5.5),

Θ
(i)
m = Θ

(i)
m,n, for n ∈ Nm, since experiencing given interference power on any sum

node is equally probable, and p(i)(u) is given by

p(i)(u) =
M−1∑
k=u

Ψk

(
k

u

)(
1− q(i−1)

m (k, u)
)k−u(

q(i−1)
m (k, u)

)u
(5.8)

where Ψk is defined in (5.1) and q
(i−1)
m = 1 for i 6 1.

Proof. The proof is provided in Appendix D.1. Note that (5.5) cannot be expressed
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in closed form but it can be found numerically using the following equation

Θ(i)
m,n(u) =

u∑
c=0

Wc,n, 0 6 u 6M − 1, (5.9)

as discussed in the Appendix D.1. �

5.4 Performance Optimization

We define the system load G as the normalised number of packets per slots. Since

each device generates only one packet, we have G = M
N

.

Based on the condition q(i) < q(i−1) (note that q(i) = q
(i)
m since the recovery-error

probability is the same for each device), we can define the maximum achievable load

G∗ such that recovery-error probability q(imax) after imax iterations will be almost

zero for system load G 6 G∗ in the asymptotic setting when N →∞.

Mathematically, it is given as follows:

G∗ = max

such that

q(imax) = 0.

(5.10)

In this chapter, we are interested in finding the optimal transmit power prob-

ability distribution which will maximize G∗ for a given degree distribution. This

optimization problem can be formulated as follows.

maximize
Γl

G∗

subject to E1 = σ2γth,

EΛ = Etot,∑
l

Γl = 1, ∀ l,

0 6 Γl 6 1, ∀ l,

(5.11)

where the first constraint defines the criterion for the minimum power level, the

second constraint mandates that the average power consumption must be equal
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Table 5.1: System parameter values.

Name Symbol Value
Number of slots N 1000
Max. number of iterations imax 10000
Number of power levels L 2
Probability metric Γ1 0.5
Probability metric Γ2 0.5
Power budget per frame Etot 3.52 dB
Transmit power level E1 0 dB
Transmit power level E2 6.02 dB
SINR threshold γth 0 dB
Noise power σ2 0 dB

to the power budget per frame per device denoted by Etot, where E =
∑

l ΓlEl

represents the average power level and Λ is the average degree of repetition given

as Λ =
∑

d Λdd, the third constraint mandates that the sum of all transmit power

probability levels is equal to one and the last constraint mandates that each prob-

ability level needs to be between zero and one.

5.5 Numerical Results

In this section, first we present the results to illustrate the advantage of employ-

ing transmit power diversity in conjunction with SINR based packet recovery in

CRDSA, referred to as the proposed scheme. For comparison, we consider a bench-

mark scheme in which the random access transmission scheme does not employ

transmit power diversity, however the rest of the transmission strategy and the

recovery mechanism is the same as in Section 5.3.

5.5.1 Impact of Transmit Power Diversity

We compare the performance of the proposed scheme with the benchmark scheme

by considering a simple transmit power diversity model, i.e., only two equally

probable power levels. For both schemes the SINR based recovery model is used

which employs SIC. Unless specified otherwise, the values for the parameters shown
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Figure 5.4: Recovery-error probability q(imax) vs. system load G, for the clean
packet model and SINR based model, in asymptotic setting, with Λ = {2, 3, 4, 5}.

in Table 5.1 are adopted. The transmit power level for each packet copy for the

benchmark scheme is the same, i.e., E2 = 6.02 dB.

Fig. 5.4 plots the recovery-error probability q(imax) using Proposition 5 for both

the proposed scheme and the benchmark scheme with repetition degrees Λ =

2, 3, 4, 5. We can see that for both schemes, the recovery-error probability is zero

until a specific load value (G∗). As the load is further increased beyond G∗, the

recovery-error probability abruptly escalates. As expected, the proposed scheme

significantly outperforms the benchmark scheme for different repetition rates. The

maximum achievable load G∗ is tabulated in Table 5.2. This performance improve-

ment of the proposed scheme is owing to the enhanced capture effect as a result

of the transmit power diversity. We can see that, for the given system parameters,

repetition degree 3 can achieve the highest load. This can be explained as follows.

Transmitting multiple packets copies increases the probability of success but it also

increases the level of interference. This tradeoff results in the best performance for

a certain repetition degree (3 in this case) and the performance degrades after that.
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Table 5.2: Maximum achievable load, G∗.

Λ 2 3 4 5

Benchmark
scheme

0.52 0.81 0.77 0.70

Proposed
scheme

0.98 1.18 1.04 0.82
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Figure 5.5: Evolution of error probability q(i) when operating at maximum achiev-
able load G∗ = {0.98, 1.18, 1.04, 0.92} for Λ = {2, 3, 4, 5}.
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Table 5.3: G∗ for optimal probability distribution vector {Γ∗}.

Λ G∗ Uniform G∗ Optimal {Γ∗} = {Γ1 Γ2 Γ3 Γ4 Γ5 }
2 1.62 1.68 { 0.35 0.20 0.15 0.15 0.15 }
3 1.46 1.58 { 0.55 0.05 0.10 0.05 0.25 }
4 1.07 1.33 { 0.72 0.00 0.00 0.00 0.28 }
5 0.92 1.06 { 0.55 0.00 0.00 0.00 0.45 }

5.5.2 Convergence Analysis

We investigate the convergence of the iterative SIC process at the maximum load

G∗. Fig. 5.5 plots the evolution of the recovery-error probability in the asymptotic

setting, when the system is operated at the maximum load G∗. It can be seen

from Fig. 5.5 that the convergence condition q(i) < q(i−1), defined above (5.10), is

fulfilled.

Finally, we investigate the tightness of the result in Proposition 5 when the

number of slots N is finite. Figs. 5.6 and 5.7 plot the recovery-error probability

for Λ = 2 and Λ = 3 using Proposition 5 and simulations for N=100, 500, 1000,

5000, respectively. We can see that as N increases, the simulation results quickly

approach the asymptotic performance.

5.5.3 Optimal Transmit Power Distribution

We solve (5.11) to determine the optimal transmit power distribution and inves-

tigate the improvement in performance. (5.11) can be efficiently solved using dif-

ferential evolution optimization technique [119]. The parameter values used are as

follows: N = 1000, imax = 10000,Λ = 3, L = 5, γth = 0 dB, σ2 = 0 dB, E1 =

0 dB, E2 = 3.77 dB, E3 = 7.53 dB, E4 = 11.30 dB, E5 = 15.06 dB, Etot = 20 dB.

For comparison, two probability models are considered:

• An uniform probability model in which each power level has equal probability

of being selected.

• An optimized probability model in which each power level is assigned an

optimal probability.
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Figure 5.6: Recovery-error probability q(imax) vs. system load G, for the proposed
scheme with asymptotic setting, compared with simulations for Λ = 2.

0.5 0.75 1 1.25 1.5 1.75 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

G

q(
i m

a
x
)

Asymptotic

Simu. N=100

Simu. N=500

Simu. N=1000

Simu. N=5000

0.5 0.75 1 1.25 1.5 1.75 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

G

q(
i m

a
x
)

Asymptotic

Simu. N=100

Simu. N=500

Simu. N=1000

Simu. N=5000Figure 5.7: Recovery-error probability q(imax) vs. system load G, for the proposed
scheme with asymptotic setting, compared with simulations for Λ = 3.
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Figure 5.8: Recovery-error probability q(imax) vs. system load G, for the proposed
scheme with uniform and optimal distribution {Γ∗}, compared with simulations for
Λ = {2, 3, 4, 5}.

The maximum achievable load G∗ for both models is presented in Fig. 5.8 and

Table 5.3. It can be seen that the optimized probability distribution achieves better

performance as compared to uniform probability distribution. This is due to the

fact that the optimized transmit power distributions maximize the probability of

the gap between the power levels of two copies transmitted in a given slot. This

has a greater impact on maximizing the capture effect. Hence, for the considered

system parameters, as the number of copies Λ increases, from 2 to 5, intermediate

power levels may not necessarily be used. Accordingly, their probability is zero in

the optimized transmit power distribution.

Finally, we investigate the impact of the total power budget per device per frame

(Etot), which is an important constraint in (5.11). Fig. 5.9 plots the maximum

achievable load G∗ vs. Etot for repetition rate Λ = 2 and other parameters same as

before. It can be seen that a larger Etot gives more room to exploit the transmit

power diversity and thus boosts the performance. This leads to further significant

performance improvement.
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Figure 5.9: Maximum achievable load of CRDSA with transmit power diversity
when the frame budget is varied.

5.6 Summary

In this correspondence, we have considered CRDSA with transmit power diversity

and SINR based iterative SIC decoding, in the asymptotic frame length regime. We

have proposed a framework for accurately predicting the performance of the sys-

tem. The proposed framework is validated by simulation results. The results show

promising improvements in maximum achievable system load, which is relevant to

efficient random access for MTC scenario.

In this work, fading is not considered since fading cannot provide inter-slot

receive power diversity. This is because two packet copies transmitted by a given

MTD will under go the same fading experience. The recovery-error probability will

be same for given slots if two MTDs happen to transmit at the same set of slots.

It is due to the fact that the BS can receive different received power levels from

the MTDs located at different locations, even if MTDs transmit their packet copies

at the same power level. In this case, if two or more slots contain packet copies

from the same MTDs then we might recover some packets from these slots, since
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there is a received power diversity between the packet copies from different MTDs.

However, in this scenario, there is no inter-slot received power diversity, i.e., the

received power level for each copy from a given MTD will be same. Nevertheless, a

fading power gain parameter can easily be included in the Proposition 5. However,

it will substantially increase the overhead of simulations required to do the SIC

based iterative convergence analysis of the optimization problem in (5.10). Due to

this complexity, existing works [73,74,80] involving SIC based iterative convergence

analysis of CRDSA, using the differential evolution optimization technique, do not

consider fading.



Chapter 6

Conclusions and Future Research

Directions

In this chapter, we summarize the general conclusions drawn from this thesis. We

also outline some future research directions arising from this thesis.

In this thesis, we classify machine-type communication (MTC) use-cases in the

following major challenges and requirements: deployment diversity, traffic hetero-

geneity, energy constraint, and operational efficiency. The intensity and further

categorization of these major issues vary from one use-case to the other as dis-

cussed in Chapter 1. One the most crucial requirements and challenges for wireless

MTC systems is the energy-efficient operation of the machine-type devices (MTDs).

This is because in most cases MTDs are unattended and battery operated. In ad-

dition, MTC systems require low-latency, perpetual operation, massive-access, etc.

This thesis focuses on the modelling, analysis and design of novel communication

strategies for wireless MTC systems to realize the notion of Internet of things (IoT).

We consider sensor based MTDs which acquire physical information from the

environment and transmit it to a base station (BS) while satisfying application

specific quality-of-service (QoS) requirements. In particular, our overall objective

is to minimize the energy cost of the MTDs. The considered network scenarios

constitute fairly generic MTC system settings. As such, the design policies pro-

posed and the insights and observations given in this thesis provide novel wireless

solutions for a wide range of MTC use-cases and applications. The proposed novel

119
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techniques and insights gained from this thesis aim to better utilize the limited

energy resources of MTDs in order to effectively serve the future wireless networks.

Single-User With Limited Battery Capacity: We firstly consider a multi-

user multi-channel sparse MTC network scenario which emulates practical use-cases

requiring high reliability and low-latency. In such a system, each MTD is assigned

a channel and transmit data on dedicated. The data may be generated or sensed by

the MTD periodically, real-time, on demand (only when requested by the receiver),

or due to the occurrence of an event of interest that is to be delivered under given

reliability and delay conditions. For this model, designing a generic single-user

communication policy would suffice and the same policy can be employed by all

other users for corresponding parameters.

In Chapter 2, we investigated the joint optimization of compression and trans-

mission strategy for an energy-constrained sensor MTD, and illustrated their trade-

off. We showed that the joint optimization performs much better than only op-

timizing transmission without compression under any bit error rate (BER) and

delay constraints. The performance gain observed ranges from 90% to 2000% and

is most profound when the delay constraint is stringent. Overall, it is best to re-

duce compression and increase the transmission rate when the delay constraint gets

more stringent and vice versa. The optimal level of compression is insensitive to

the change in the BER requirement.

Single-User With Limited Battery Capacity: The second network sce-

nario is evolved from the first scenario and considers an important aspect of energy-

harvesting for a multi-user multi-channel sparse MTC system. Each MTD is bat-

tery powered which is recharged by an energy-harvesting source for perpetual op-

eration. This network scenario cover loss tolerant and high reliability demanding

MTC systems. As before, designing a generic single-user communication policy

would suffice for this network scenario.

In Chapter 3, we investigated the joint wireless power transfer (WPT) and

wireless information transfer (WIT) policies, employing data compression, to min-

imize the energy transferred by the harvesting access point (HAP) under given

system constraints. For a set of practical parameter values, the joint optimization

performs significantly better than only optimizing harvesting-time ratio and trans-

mission rate without compression. Specifically, the gain is relatively large, up to
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19%, when the delay constraint is stringent.

Multi-User Sequential Channel Access: The third network scenario is

applicable to a multi-user single-channel sparse or massive MTC system. In such

a system, all MTDs share a single channel and sequentially transmit data on this

channel for interference free transmission. The data may be generated or sensed

by the MTD periodically or due to the occurrence of an event of interest that is

to be delivered under given reliability and delay conditions. This network scenario

covers high reliability and low-latency MTC systems. For this network scenario,

the communication policies for all MTDs are jointly devised for the given system

parameters.

In Chapter 4, we investigated the joint optimization of sequencing and schedul-

ing in a multi-user uplink machine-type communication scenario, considering adap-

tive compression and transmission rate control design. The energy efficiency per-

formance is evaluated for three energy-minimization system objectives, which differ

in terms of the overall system performance and fairness among the devices. Our

results have showed that the proposed optimal scheme outperforms the schemes

without multi-user sequencing. The improvement in energy efficiency observed is

up to 45% when multi-user sequencing is optimized, under given maximum trans-

mit power and delay constraints.

Multi-User Random Channel Access: The fourth network scenario is

evolved from the third scenario. However, due to lack of coordination among

devices, the MTDs randomly transmit short data-packets on a shared channel.

This network scenario covers highly reliability and dense MTC systems. For this

network scenario, the communication policies for all MTDs are jointly devised for

given system parameters.

In Chapter 5, we investigated transmit power diversity and signal-to-interference-

plus-noise ratio (SINR) based iterative successive interference cancellation (SIC)

decoding for contention resolution diversity slotted ALOHA (CRDSA), in the

asymptotic frame length regime. A mathematical framework is devised to carry

out the performance analysis of the proposed scheme. The results show promising

improvements in maximum achievable system load, which is relevant to efficient

random access for massive MTC scenario. We show that the proposed strategy

provides up to 88% system load performance improvement for massive-MTC.
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In this thesis, we considered Rayleigh fading channel for network scenarios mod-

elled in Chapters 2-4. Our focus in these network scenarios is on the benefit of data

compression for the overall data transmission energy cost minimization and its re-

lation with the availability of the channel state information at the transmitter side.

Therefore, in our case a randomly distributed channel coefficient, i.e., Rayleigh

distributed, served the purpose.

In industrial sensor network scenario, different fading models can be considered,

e.g., Nakagami fading. Nevertheless, the overall principle of the proposed schemes

for the considered network scenarios in Chapters 2-4 remains the same. The results

for a different channel fading model can be derived following the same steps given in

Chapters 2-4. Note that the insights and the conclusions drawn would still remain

the same.

The data communication in the network scenarios considered in Chapter 2 are

uncoded QAM transmission. An alternate way to achieve energy efficiency is to

employ channel coding and increasing the bandwidth. Accordingly, a constraint

on bandwidth can be defined and the computational cost can be balanced with the

transmission cost. In future this approach to reduce energy cost can be investigated.

6.1 Future Research Directions

A number of emerging practical MTC use-cases call for the design and analysis of

further novel communication solutions for energy-efficient operation of constrained

MTDs. In this regard, a few promising research directions are briefly discussed in

the following for future considerations.

Energy-efficient operation of MTDs under the coexistence of the ultra-reliable

MTC (uMTC) and massive MTC (mMTC) systems with drastically diverse traffic

types and QoS requirements is a critical research challenge. In addition, for many

smart-city MTC use-cases the same network MTDs may generate sporadic data

traffic and pose context-based QoS requirements. One way forward for such sce-

narios could be based on two-fold operation. First step could be to identify the

dynamics of the data traffic and QoS requirements on-the-go. Second step could

be to adapt the context-based communication policy design.

The short-packet communication in mMTC systems, under different low-latency
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and limited computational resources at MTDs, poses crucial challenges for the

implementation of cryptographic methods. The tradeoff between throughput and

reliability for short-packet transmission has been extensively studied recently. How-

ever, the tradeoff between latency and energy efficiency has been given little atten-

tion for the implementation of security and privacy methods in mMTC systems.

Therefore, we believe that this is an important research challenge for the future

MTC systems calling for novel solutions.

Cooperative communication is an effective solution for multi-hop communica-

tion in terms of energy efficiency, spectrum efficiency reliability, scalability and

coverage. Mostly, the routing technique for cooperation among devices and the

transmission design are optimized separately because of modularity. For energy-

constrained MTDs, a joint cross-layer optimization design for multi-hop MTC may

provide advantageous operation. However, deploying too many relays, though in-

creases diversity, reduces the energy efficiency. A future direction in this regard is

to devise a joint cooperation and communication design to determine the optimal

number of relays and transmission policy exploiting the diversity and energy effi-

ciency tradeoff. Moreover, an incentive and fairness based relay selection design

can also be employed for appropriate relay selection.





Appendix A

This appendix contains the proofs needed in Chapter 2.

A.1 Proof of Proposition

Substituting BER constraint (2.15) and SNR expression (2.16) in second constraint

in (2.17) yields

ω2 exp

(
− ω1

(M − 1)

κPt|h|2
σ2dα

)
6 φ. (A.1.1)

For given instantaneous CGI, |h|2, a lower bound on the transmit power, Pt,

can be obtained by rearranging (A.1.1) as follows

Pt > (1−M)
σ2dα ln

(
φ/ω2)

ω1κ|h|2
. (A.1.2)

By substituting Tcp, Ttx, Ptx, r and ε from (2.1), (2.3), (2.9), (2.4) and (2.8),

respectively, in (2.13) yields Ψ as a function of M , Dcp and Pt, which can be

expressed as follows

Ψ = τDβ+1D−βcp Pcp − τDPcp +
DcpTs ln(2)

ln(M)

(
3Pt(M

1
2 − 1)

µ(M
1
2 + 1)

+ Po

)
. (A.1.3)

For given values of M and Dcp, Ψ is an increasing function of Pt. Hence,

the best choice of Pt to minimize Ψ while satisfying the constraint in (A.1.2) is

the minimum value obtained by setting (A.1.2) with equality. Thus, Pt can be

expressed as a function of M , as given in (2.19).

125



126

A.2 Proof of Theorem

It can be shown that (2.21) is not convex in M . By substitution of variable M =

exp(z) in (2.21), Ψ̃ can be equivalently defined as

Ψ̃(z,Dcp) = τDβ+1D−βcp Pcp − τDPcp −
Ts ln(2)

zD−1
cp

(
3Ω(exp(z/2)− 1)2

µ|h|2 − Po

)
.

(A.2.1)

Accordingly, the problem defined in (2.17) can be equivalently given as follows

minimize
z,Dcp

Ψ̃(z,Dcp)

subject to τDβ+1D−βcp − τD + z−1DcpTs ln(2)− T 6 0,

2− exp(z) 6 0,

exp(z)− ln(Mmax) 6 0,

Dmin −Dcp 6 0,

Dcp −D 6 0.

(A.2.2)

For brevity we omit the proof, however using basic calculus and with some

algebraic manipulation, it can be shown that the problem in (A.2.2) is a convex

optimization problem. Lagrangian function for (A.2.2) can be given as in (A.2.3)

shown at the top of the next page, where Λi ∈ Λ = {Λ1,Λ2,Λ3,Λ4,Λ5} is the

Lagrangian multiplier associated with the ith constraint.

L(z,Dcp,Λ) = τDPcp

(Dβ

Dβ
cp

−1
)
− Ts ln(2)

zD−1
cp

(
3Ω(exp(z/2)−1)2

µ|h|2 −Po

)
+ Λ1

(
τD
(Dβ

Dβ
cp

−1
)

+
Ts ln(2)

zD−1
cp

−T
)

+ Λ2

(
2− exp(z)

)
+ Λ3

(
exp(z)− ln(Mmax)

)
+ Λ4(Dmin −Dcp)

+ Λ5(Dcp −D),

(A.2.3)
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The Karush-Kuhn-Tucker (KKT) conditions for (A.2.2) are:

τDβ+1D−βcp − τD + z−1DcpTs ln(2)− T 6 0,

2− exp(z) 6 0, exp(z)− ln(Mmax) 6 0,

Dmin −Dcp 6 0, Dcp −D 6 0,

(A.2.4a)

Λ1 > 0, Λ2 > 0, Λ3 > 0, Λ4 > 0, Λ5 > 0, (A.2.4b)

Λ1

(
τDβ+1D−βcp − τD + z−1DcpTs ln(2)− T

)
= 0,

Λ2(2− exp(z)) = 0, Λ3(exp(z)− ln(Mmax)) = 0,

Λ4(Dmin −Dcp) = 0, Λ5(Dcp −D) = 0,

(A.2.4c)

∇z,DcpL(z,Dcp,Λ) =
[∂L
∂z

∂L
∂Dcp

]>
= [0 0]>. (A.2.4d)

where ∇ is the gradient operator and [·]> is the transpose operator.

We first determine the optimal constellation size which will minimize (A.2.1)

and then use it to get the optimal transmit power and compression ratio. It can

be shown that Ψ̃ in (A.2.1) is convex in z and there lies a global minima. From

(A.2.4d) we have
[
∂L
∂z

∂L
∂Dcp

]>
= [0 0]>. Taking partial derivative of (A.2.3) with

respect to z and setting ∂L
∂z

= 0 and after simplification we get

3ΩTs

µ|h|2
(

exp
(
z/2
)
−1
)(

(z−1)exp
(
z/2
)
+1
)

+TsPo+Λ1Ts+
(Λ2−Λ3)z2exp(z)

Dcp ln(2)
= 0.

(A.2.5)

Similarly, it can also be shown that Ψ̃ in (A.2.1) is convex in Dcp and there

lies a global minima. Taking partial derivative of (A.2.3) with respect to Dcp and

setting ∂L
∂Dcp

= 0 and after simplification we get

3ΩTs

µ|h|2
(
exp
(
z/2
)
− 1
)2

+ TsPo + Λ1

(
Ts −

zτβDβ+1

ln(2)Dβ+1
cp

)
− Λ4z

ln(2)
+

Λ5z

ln(2)
=
zτβDβ+1Pcp

ln(2)Dβ+1
cp

. (A.2.6)
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From complimentary slackness condition (A.2.4c) we know either Λi is zero

or the associated constraint function is zero for any given i. First we consider

one of the possible cases that is Λ1, Λ2,Λ3,Λ4,Λ5 do not exist, i.e., unconstrained

minimization. Accordingly, plugging in Λ1=0,Λ2=0,Λ3=0,Λ4=0,Λ5=0 in (A.2.5),

(A.2.6) yields following expressions, respectively,

3Ω

µ|h|2
(

exp
(
z/2
)
−1
)(

(z−1)exp
(
z/2
)
+1
)

+ Po = 0, (A.2.7)

− zτβD
β+1Pcp

TsD
β+1
cp ln(2)

+
3Ω

µ|h|2
(

exp
(
z/2
)
−1
)2

+ Po = 0. (A.2.8)

Solving (A.2.8) for Dcp yields

Dcp = D

(
zτβPcp

3ΩTs ln(2)
µ|h|2

(
exp(z/2)−1

)2
+PoTs ln(2)

) 1
β+1

. (A.2.9)

Numerically solving (A.2.7) for z yields its value z̃. Substituting this value of

z in (A.2.9) and solving for Dcp yields its value D̃cp. z̃ and D̃cp provide a lower

bound on optimization problem in (A.2.2) for given instantaneous CGI, |h|2. It can

be shown that z̃ and D̃cp satisfy all the KKT conditions when the first constraint

in (A.2.2) is slack, i.e.,

τDβ+1D̃−βcp − τD + z̃−1D̃cpTs ln(2)− T < 0, (A.2.10)

and other constraints are also slack. Thus, the optimal lagrange multiplier Λ1,

Λ2,Λ3,Λ4,Λ5 are zero. Hence, the derived solution in (A.2.7) and (A.2.9) is the

optimal solution for the optimization problem in (A.2.2) for given instantaneous

CGI, |h|2, when all constraints in (A.2.2) are slack.

Now consider another possible case when the first constraint in (A.2.2) is not

slack, i.e., Λ1 exits and Λ2,Λ3,Λ4,Λ5 do not exist. Thus, plugging in Λ1 6=0,Λ2=0,

Λ3=0,Λ4=0,Λ5=0 in (A.2.5), (A.2.6) and the complimentary slackness conditions

(A.2.4c) yields following expressions, respectively,

3Ω

µ|h|2
(

exp(z/2)−1
)(

(z−1)exp
(
z/2
)
+1
)

+ Po + Λ1 = 0, (A.2.11)
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Λ1

(
1 − zτβDβ+1

TsD
β+1
cp ln(2)

)
− zτβDβ+1Pcp

TsD
β+1
cp ln(2)

+
3Ω

µ|h|2
(

exp
(
z/2
)
−1
)2

+ Po = 0.

(A.2.12)

Solving (A.2.11) for Λ1 and substituting its value in (A.2.12) yields (A.2.13)

shown at the top of the next page.(
3Ω

µ|h|2
(

exp(z/2)− 1
)(

(z − 1)exp(z/2) + 1
)

+ Po

)(
1− zτβDβ+1

TsD
β+1
cp ln(2)

)
+
zτβDβ+1Pcp

TsD
β+1
cp ln(2)

− 3Ω

µ|h|2
(
exp(z/2)− 1

)2
= Po.

(A.2.13)

Solving (A.2.13) for Dcp yields

Dcp = Dυ
1

β+1 , (A.2.14)

where

υ =
Pcp−Po− 3Ω

µ|h|2
(
exp(z/2)−1

)(
(z−1)exp(z/2)+1

)
3Ω

τβµ|h|2
(
exp(z/2)− exp(z)

) . (A.2.15)

Substituting Dcp from (A.2.14) in (A.2.13) yields

T

D
+ τ − τυ

−β
β+1 =

Ts ln(2)

z
υ

1
β+1 . (A.2.16)

Numerically solving (A.2.12) for z yields its value ẑ. Substituting this value

of z in (A.2.11) and solving for Dcp yields its value D̂cp. The value of z can be

obtained by numerically solving (A.2.12). Substituting value of z in (A.2.11) and

solving for Dcp yields its value. It can be shown that ẑ and D̂cp satisfy all the KKT

conditions when all constraints in (A.2.2) are slack except the first constraint,

thus the optimal lagrange multiplier Λ1 is positive and Λ2,Λ3,Λ4,Λ5 are zero.

Hence, the derived solution in (A.2.14) and (A.2.16) is the optimal solution for the

optimization problem in (A.2.2), when all constraints in (A.2.2) are slack except

the first constraint. For all other cases, similar steps can be followed and it can be

shown that these cases violate one or more constraints.

The problem in (A.2.2) is equivalent to (2.17), thus the optimal values of M and
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Dcp for both cases can be obtained by substituting z = ln(M) in (A.2.7), (A.2.9)

and (A.2.16), (A.2.14), respectively, which will minimize the objective function in

(2.17). Finally, by substituting the optimal value of M in (2.19) we can determine

the optimal Pt which will minimize Ψ for given instantaneous CGI, |h|2.

A.3 Proof of Proposition

Substituting BER constraint (2.15) and SNR expression (2.16) in second constraint

in (2.32) yields

P
{
ω2 exp

(
− ω1

(M − 1)

κPt|h|2
σ2dα

)
6 φ

}
> ϑ. (A.3.1)

Solving (A.3.1) for fading power gain, |h|2, yields

P
{
|h|2 > (1−M)

σ2dα ln(φ/ω2)

ω1κPt

}
> ϑ. (A.3.2)

The left hand side of (A.3.2) represents the complimentary cumulative distri-

bution function (CCDF) for |h|2. For our considered Rayleigh fading channel, the

fading power gain, |h|2, is exponentially distributed. (A.3.2) can be given as follows

1−
[
1− exp

(
(M − 1)

σ2dα ln(φ/ω2)

ςω1κPt

)]
> ϑ, (A.3.3)

where ς represents the scale parameter of the probability distribution. Solving

(A.3.3) for Pt yields

Pt > (M − 1)
σ2dα ln(φ/ω2)

ςω1κ ln(ϑ)
. (A.3.4)

By substituting Tcp, Ttx, Ptx, r and ε from (2.1), (2.3), (2.9), (2.4) and (2.8),

respectively, in (2.13) yields Ψ as a function of M , Dcp and Pt, which can be

expressed as follows

Ψ = τDβ+1D−βcp Pcp − τDPcp +
DcpTs ln(2)

ln(M)

(
3Pt(M

1
2 − 1)

µ(M
1
2 + 1)

+ Po

)
. (A.3.5)



A.3 Proof of Proposition 131

For given values of M and Dcp, Ψ is an increasing function of Pt. Hence,

the best choice of Pt to minimize Ψ while satisfying the constraint in (A.3.4) is

the minimum value obtained by setting (A.3.4) with equality. Thus, Pt can be

expressed as a function of M , as given in (2.33).





Appendix B

This appendix contains the proof needed in Chapter 3.

B.1 Proof of Theorem

Lagrangian function for (3.14) can be given as

L(ρMTC, z,Dcp,Λ) = ρMTC

+ Λ1

(
PsenTsen+

τDβ+1Pcp

Dβ
cp

−τDPcp+
b(exp(z)+c)

zD̂−1
cp

+ηρMTCTd
)

+ Λ2

(
Tsen+

τDβ+1

Dβ
cp

−τD+
ln(2)

BzD−1
cp

−T+ρMTCT
)

− Λ3ρMTC

+ Λ4(ρMTC−1)

+ Λ5

( 2

ln(2)
−z
)

+ Λ6(Dmin−Dcp)

+ Λ7(Dcp−D),

(B.1.1)

where Λi ∈ Λ = {Λ1,Λ2,Λ3,Λ4} is the Lagrangian multiplier associated with the

ith constraint.

The Karush-Kuhn-Tucker (KKT) complementary slackness and optimality con-
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ditions for (3.14) are as follows:

Λ1

(Dcpb

z

(
exp(z)+c

)
+
τDβ+1

Dβ
cpP−1

cp

−τDPcp+ηρMTCTd+PsenTsen

)
= 0,

Λ2

(
Tsen+

τDβ+1

Dβ
cp

−τD+
ln(2)

BzD−1
cp

−T+ρMTCT
)

= 0,

Λ3(−ρMTC) = 0, Λ4(ρMTC−1) = 0, Λ5

( 2

ln(2)
−z
)

= 0,

Λ6(Dmin−Dcp) = 0, Λ7(Dcp−D) = 0,

(B.1.2a)

[ ∂L
∂ρMTC

∂L
∂z

∂L
∂Dcp

]>
= [0 0 0]>. (B.1.2b)

where [·]> is the transpose operator.

Taking the partial derivative of (B.1.1) with respect to ρMTC and by setting
∂L

∂ρMTC
= 0 we get

1 + Λ1ηTd+ Λ2T − Λ3 = 0. (B.1.3)

Taking partial derivative of (B.1.1) with respect to z and setting ∂L
∂z

= 0 and

after some simplification we get

Λ1Dcpb

z2

(
(z − 1) exp(z)− c

)
− Λ2Dcp ln(2)

Bz2
− Λ5 = 0. (B.1.4)

Taking partial derivative of (B.1.1) with respect to Dcp and setting ∂L
∂Dcp

= 0

and after some simplification we get

Λ1

(
− τβDβ+1Pcp

Dβ+1
cp

+
b

z

(
exp(z) + c

))
+

Λ2

(
− τβDβ+1

Dβ+1
cp

+
ln(2)

Bz

)
− Λ6 + Λ7 = 0. (B.1.5)

From (B.1.2a) we know either Λi is zero or the associated constraint function

is zero for any given i. First we consider one of the possible cases that is Λ1 exists

and Λ2,Λ3,Λ4,Λ5,Λ6,Λ7 do not exist. Accordingly, solving (B.1.3) for Λ1 yields

its value

Λ̃1 = − 1

ηTd
. (B.1.6)



B.1 Proof of Theorem 135

Substituting the value of Λ1 from (B.1.6) into (B.1.4), yields

− Dcpb

z2ηTd

(
(z − 1) exp(z)− c

)
= 0. (B.1.7)

With some algebraic manipulation, solving (B.1.7) for z yields its value given as

follows

z̃ = W0

(
exp

(
ln(c)− 1

))
+ 1, (B.1.8)

where W0(·) is the principle branch of the Lambert W function. Substituting the

value of z from (B.1.8) into (B.1.5), and solving for Dcp yields its value given as

follows

D̃cp = D
( τβPcpz̃

b exp(z̃) + bc

) 1
β+1

. (B.1.9)

Since, Λ1 6= 0, thereby, from (B.1.2a), we have

ηTd

ρ−1
MTC

=
τD

P−1
cp

− Tsen

P−1
sen

− τDβ+1

P−1
cp D̃

β
cp

− D̃cpb

z̃

(
exp(z̃) + c

)
. (B.1.10)

Solving (B.1.10) for ρMTC yields its value given as follows

ρ̃MTC =
1

ηTd

(
τD

P−1
cp

− Tsen

P−1
sen

− τDβ+1

P−1
cp D̃

β
cp

− exp(z̃) + c

z̃b−1D̃−1
cp

)
. (B.1.11)

It can be shown that z̃, D̃cp, ρ̃MTC satisfy all the KKT conditions and thus are

optimal for the problem in (3.14), when all constraints in (3.14) are slack, except

the first constraint.

Now consider another possible case, when both Λ1 and Λ2 exist and Λ3,Λ4,Λ5,

Λ6,Λ7 do not exist. Accordingly, solving (B.1.3) for Λ2 yields its value

Λ̂2 = − 1

T
− Λ1ηd. (B.1.12)

Substituting the value of Λ2 from (B.1.12) into (B.1.4) and solving for Λ1, yields

its value

Λ̂1 =
ln(2)
TB

b(z − 1) exp(z)− bc− ηd ln(2)
B

. (B.1.13)
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Substituting the value of Λ2 from (B.1.12) into (B.1.5) and solving for Dcp yields

its value given as follows

D̂cp = D

(
zτβ

(
T−1Λ̂−1

1 +ηd−Pcp

)
Λ̂−1

1 ln(2)

TB
+ηd ln(2)

B
−b exp(z)−bc

) 1
β+1

, (B.1.14)

where Λ̂1 is a function of z and is defined in (B.1.13).

Since, Λ2 6= 0, accordingly, from (B.1.2a), we have

Tsen + τDβ+1D̂−βcp − τD +
D̂cp ln(2)

Bz
− T + ρMTCT = 0. (B.1.15)

Solving (B.1.15) for ρMTC yields its value given as follows

ρ̂MTC =
1

T

(
T − Tsen − τDβ+1D̂−βcp + τD − D̂cp ln(2)

Bz

)
. (B.1.16)

Also, Λ1 6= 0, thereby, from (B.1.2a), we have

Tsen

P−1
sen

+
τDβ+1

P−1
cp D̂

β
cp

− τD

P−1
cp

+
b(exp(z)+c)

zD̂−1
cp

+
ηρ̂MTC

(Td)−1
= 0. (B.1.17)

Numerically solving (B.1.17) for z yields its value ẑ. Substituting this value of z

in (B.1.12), (B.1.13), (B.1.14), (B.1.16) yields the values of Λ̂2, Λ̂1, D̂cp and ρ̂MTC,

respectively. It can be shown that D̂cp, ρ̂MTC, ẑ satisfy all the KKT conditions

and thus are optimal for (3.14), when all constraints are slack except the first and

second constraint. It can be shown that all other cases for the lagrange multipliers

violate one or more KKT conditions.

The problem in (3.14) is equivalent to (3.12), thus the optimal values of Dcp,

ρMTC, PIT, for both cases can be obtained by substituting z = ln
(
1−κλ ln(δ)PIT

σ2rαΓ

)
in

(B.1.12), (B.1.13), (B.1.14), (B.1.16), which will minimize the objective function

in (3.12).



Appendix C

This appendix contains the proofs needed in Chapter 4.

C.1 Proof of Lemma 1

It can be shown that the energy cost of the ith device, Ei, defined in (4.14), is

non-convex in Pi. By substitution of variable Zi = ln
(
1+κPi|hi|

2

Γσ2dαi

)
in (4.14), Ei can

equivalently be expressed as

Ei
(
Zi, Dcp,i

)
= τDiPcp

(( Di

Dcp,i

)β−1
)

+
Dcp,ibi
Zi

(
exp(Zi)+ci

)
, (C.1.1)

where bi=
Γσ2dαi ln(2)

µBκ|hi|2 , ci=
µκ|hi|2Po

Γσ2dαi
−1. Substituting Zi in constraints (4.15c), (4.15e)

and (4.15h) yields

x1,iτDi

(( Di

Dcp,i

)β−1
)

+ x1,i
Dcp,i

BZi
6 T1, ∀ i, (C.1.2a)

N∑
n=2

xn,i
Dcp,i

BZi
6

N∑
n=2

xn,iTn, ∀ i, (C.1.2b)

0 6 Zi 6 Zmax, ∀ i, (C.1.2c)
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where Zmax = ln
(
1+κPmax|hi|2

Γσ2dαi

)
. Accordingly, problems (4.16) and (4.17) respec-

tively become as

P̃SUM : minimize
Zi, Dcp,i, Tn, ∀n,i

N∑
i=1

Ei(Zi, Dcp,i)

subject to (4.15b), (4.15d), (C.1.2a), (C.1.2b), (C.1.2c),

(4.15i), (4.15j),

(C.1.3)

P̃MM : minimize
Zi, Dcp,i, Tn, ∀n,i

max
16i6N

{
Ei(Zi, Dcp,i)

}
subject to (4.15b), (4.15d), (C.1.2a), (C.1.2b), (C.1.2c),

(4.15i), (4.15j).

(C.1.4)

Using basic calculus and with some algebraic manipulation, it can be shown that

Ei
(
Zi, Dcp,i

)
in (C.1.1) and constraint functions in (4.15d), (C.1.2a) and (C.1.2b),

respectively, are jointly convex in Zi and Dcp,i, ∀ i. For brevity, we omit the detailed

proof of this result here. Also, because the sum of convex functions is convex and

the maximum of the convex functions is also convex [120].
∑N

i=1Ei(Zi, Dcp,i) and

max
16i6N

{
Ei(Zi, Dcp,i)

}
both are jointly convex in Zi and Dcp,i, ∀ i. Hence, for a given

sequence, P̃SUM and P̃MM both are convex optimization problems.

Now consider problem P̂PF in (4.21). It can be shown that the objective func-

tion in (4.21) is jointly non-convex in Pi and Dcp,i, ∀ i. We propose substituting

Zi = ln
(
1 + κPi|hi|

2

Γσ2dαi

)
and Vi = ln

(
Dcp,i

)
in (4.14) to arrive at

log
(
Ei
(
Zi, Vi

))
= log

(
τDiPcp

( Dβ
i

exp(βVi)
−1
)

+
bi exp(Vi)

Zi

(
exp

(
Zi
)
+ci

))
.

(C.1.5)

Substituting Zi and Vi in the constraint functions (4.15c), (4.15d), (4.15e),

(4.15h) and (4.15i) yields

x1,iτDi

( Dβ
i

exp
(
βVi
)−1

)
+ x1,i

exp
(
Vi
)

ln(2)

BZi
6 T1, ∀ i, (C.1.6a)

N∑
n=2

xn,iτDi

( Dβ
i

exp
(
βVi
)−1

)
6

N∑
n=2

n−1∑
k=1

xn,iTk, ∀ i, (C.1.6b)
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N∑
n=2

xn,i
exp

(
Vi
)

ln(2)

BZi
6

N∑
n=2

xn,iTn, ∀ i, (C.1.6c)

0 6 Zi 6 Zmax, ∀ i, (C.1.6d)

ln(Dmin,i) 6 Vi 6 ln(Di), ∀ i, (C.1.6e)

For a known sequence, problem P̂PF in (4.21) can equivalently be written as

P̃PF : minimize
Zi, Vi, Tn, ∀n,i

N∑
i=1

log
(
Ei(Zi, Vi)

)
subject to (4.15b), (C.1.6a), (C.1.6b), (C.1.6c), (C.1.6d),

(C.1.6e), (4.15j).

(C.1.7)

It can also be shown that (C.1.5) is jointly convex in Zi and Vi. Since the sum of

convex functions is convex [120],
∑N

i=1 log
(
Ei(Zi, Vi)

)
is jointly convex in both Zi

and Vi, ∀ i. Similarly, it can be shown that (C.1.6b) is convex in Vi, ∀ i, (C.1.6c) is

jointly convex in Zi and Vi, ∀ i, and (C.1.6a) is jointly convex in Z1 and V1. Hence,

for a given sequence, P̃PF is convex.

C.2 Proof of Lemma 3

This proof is based on [109–111]. Let S(j+1) = (Z
(j+1)
i , D

(j+1)
cp,i , T

(j+1)
n , x

(j+1)
n,i , ∀n, i)

be the solution to problem (4.31) at the (j+1)th iteration at a given point x
(j)
n,i, ∀n, i,

which yields

OF(j+1)
(
S(j+1)

)
=

N∑
i=1

E
(j+1)
i (Z

(j+1)
i , D

(j+1)
cp,i )+Λ

N∑
n=1

N∑
i=1

(
x

(j+1)
n,i

(
1−2x

(j)
n,i

)
+
(
x

(j)
n,i

)2
)

6
N∑
i=1

E
(j)
i (Z

(j)
i , D

(j)
cp,i)+Λ

N∑
n=1

N∑
i=1

(
x

(j)
n,i

(
1−2x

(j−1)
n,i

)
+
(
x

(j−1)
n,i

)2
)

= OF(j)
(
S(j)

)
(C.2.1)

Thus, the Algorithm 1 produces a monotone sequence of improved solutions,{
OF(j)

(
S(j)

)}
, for problem (4.16). Moreover,

{
OF(j)

(
S(j)

)}
is bounded by con-

straint functions (4.15h), (4.15i) and (4.15j), and therefore convergence is guaran-
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teed, i.e.,
(

OF(j+1)
(
S(j+1)

)
−OF(j)

(
S(j)

))
→ 0 as j →∞.

Following [110], problem (4.16), which is solved by Algorithm 1, can be repre-

sented as

minimize
s

ϕo(s) (C.2.2a)

subject to ψu(s) 6 0, ∀u ∈ {1, 2, · · ·, U}, (C.2.2b)

ϕv(s) 6 0, ∀ v, ∈ {1, 2, · · ·, V }, (C.2.2c)

where s are design parameters, ϕo is the objective function, ψu are convex con-

straints and ϕv are non-convex constraints. The convex approximation of (4.16) in

(4.31) can be rewritten as

minimize
s

ϕ̃o(s, s(j)) (C.2.3a)

subject to ψu(s, s
(j)) 6 0, ∀u ∈ {1, 2, · · ·, U}, (C.2.3b)

ϕ̃v(s, s
(j)) 6 0, ∀ v, ∈ {1, 2, · · ·, V }, (C.2.3c)

where ϕ̃o and ϕ̃v are the convex approximations of objective function, ϕo, and the

non-convex constraints, ϕ̃v, respectively, at a given point s(j). From (4.30), (4.31)

and (C.2.1), we have

ϕv(s) 6 ϕ̃v(s, s
(j)), ∀ v, (C.2.4a)

ϕv(s
(j)) = ϕ̃v(s

(j), s(j)), ∀ v, (C.2.4b)

∇ϕv(s(j)) = ϕ̃v(s
(j), s(j)), ∀ v. (C.2.4c)

Let s(j) be the solution for Algorithm 1 at convergence. It is the optimal and

the Fritz John point for problem (C.2.3) satisfying the following conditions [111]

λo∇ϕ̃o(s(j), s(j)) +
U∑
u=1

λu∇ψu(s(j)) +
V∑
v=1

λv∇ϕ̃v(s(j), s(j)) = 0, (C.2.5a)

λuψu(s
(j)) = 0, ∀u, (C.2.5b)

λvϕ̃v(s
(j), s(j)) = 0, ∀ v, (C.2.5c)
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where λu and λv are Lagrange variables for the uth and the vth convex and non-

convex constraints, respectively. Substituting (C.2.4b) and (C.2.4c) in (C.2.5)

yields

λo∇ϕo(s(j)) +
U∑
u=1

λu∇ψu(s(j)) +
V∑
v=1

λv∇ϕv(s(j)) = 0, (C.2.6a)

λuψu(s
(j)) = 0, ∀u, (C.2.6b)

λvϕv(s
(j)) = 0, ∀ v. (C.2.6c)

The above results hold and thus satisfy the conditions (C.2.5), implying that s(j) is

a Fritz John solution of (C.2.2). Since (C.2.2) represents (4.16) the same conclusion

can be drawn for (4.16). �

C.3 Optimization Problems for the Benchmark

Scheme

For the benchmark scheme, the problems for the considered objectives can be

expressed as

Pb
SUM : minimize

Zi, Tn, ∀n,i

N∑
i=1

(Dibi
Zi

(
exp(Zi) + ci

))
(C.3.1a)

subject to (4.15b), (4.15j), (4.22e),

N∑
n=1

xn,i
Di

BZi
6

N∑
n=1

xn,iTn, ∀ i, (C.3.1b)

Pb
MM : minimize

Zi, Tn, ∀n,i
max

16i6N

{Dibi
Zi

(
exp(Zi) + ci

)}
subject to (4.15b), (4.15j), (4.22e), (C.3.1b),

(C.3.2)

Pb
PF : minimize

Zi, Tn, ∀n,i

N∑
i=1

log
(Dibi
Zi

(
exp(Zi) + ci

))
subject to (4.15b), (4.15j), (4.22e), (C.3.1b), .

(C.3.3)
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C.4 Optimization Problems for Case 1

For Case 1, the problems for the considered objectives can be expressed as

Pc1
SUM : minimize

Zi, Dcp,i, ∀ i

N∑
i=1

(
τDnPcp

(
(
Dn

Dcp,n

)β−1
)
+
Dcp,nbn
Zn

(
exp(Zn)+cn

))
(C.4.1a)

subject to (4.15i), (4.22e),

x1,iτDi

(( Di

Dcp,i

)β−1
)

+ x1,i
Dcp,i

BZi
6
Tframe

N
, ∀ i, (C.4.1b)

N∑
n=2

xn,iτDi

(( Di

Dcp,i

)β−1
)
6

N∑
n=2

n−1∑
k=1

xn,i
Tframe

N
, ∀ i,

(C.4.1c)

N∑
n=2

xn,i
Dcp,i

BZi
6

N∑
n=2

xn,i
Tframe

N
, ∀ i, (C.4.1d)

Pc1
MM : minimize

Zi, Dcp,i, ∀ i
max

16i6N

{
τDiPcp

(( Di

Dcp,i

)β−1
)

+Dcp,ibiZ
−1
i

(
exp(Zi)+ci

)}
subject to (4.15i), (4.22e), (C.4.1b) – (C.4.1d),

(C.4.2)

Pc1
PF : minimize

Zi, Vi, ∀ i

N∑
i=1

log
(
τPcp

( DiD
β
i

exp(βVi)
−Di

)
+
bi exp

(
Vi
)

Zi

(
exp

(
Zi
)
+ci

))
(C.4.3a)

subject to (4.22e), (4.24e),

x1,iτDi

( Dβ
1

exp(βV1)
−1
)

+ x1,i
exp(V1) ln(2)

BZi
6
Tframe

N
, ∀ i,

(C.4.3b)

N∑
n=2

xn,iτDi

(( Dβ
i

exp(βV1)

)
−1
)
6

N∑
n=2

n−1∑
k=1

xn,i
Tframe

N
, ∀ i,

(C.4.3c)
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N∑
n=2

xn,i
exp(Vn) ln(2)

BZi
6

N∑
n=2

xn,i
Tframe

N
, ∀ i, (C.4.3d)

C.5 Optimization Problems for Case 2

For Case 2, the problems for the considered objectives can be expressed as

Pc2
SUM : minimize

Zi, Dcp,i,
xn,i, ∀n,i

N∑
i=1

(
τDiPcp

(( Di

Dcp,i

)β−1
)

+
Dcp,ibi
Zi

(exp(Zi)+ci)
)

subject to (4.15f), (4.15g), (4.15i), (4.15k), (4.22e),

(C.4.1b) – (C.4.1d),

(C.5.1)

Pc2
MM : minimize

Zi, Dcp,i,
xn,i,∀n,i

max
16i6N

{
τDiPcp

(( Di

Dcp,i

)β−1
)

+
Dcp,ibi
Zi

(exp(Zi)+ci)
}

subject to (4.15f), (4.15g), (4.15i), (4.15k), (4.22e),

(C.4.1b) – (C.4.1d),

(C.5.2)

Pc2
PF : minimize

Zi, Vi,
xn,i,∀n,i

N∑
i=1

log
(
τPcp

( DiD
β
i

exp(βVi)
−Di

)
+
bi exp

(
Vi
)

Zi

(
exp

(
Zi
)
+ci

))
subject to (4.15f), (4.15g), (4.15k), (4.22e), (4.24e),

(C.4.3b) – (C.4.3d).

(C.5.3)





Appendix D

This appendix contains the proof needed in Chapter 5.

D.1 Proof of Proposition

The probability P
(

max
{
γ

(i)
m,n

}
> γth

)
, defined in (5.3), is not tractable due to the

max {·} function, thus we use bipartite graph to find q
(i)
m . First we formulate p

(i)
m,n

which denotes the probability that the burst node Bm selects edge weight equal to

El and the cumulative weight of u other edges Θ
(i)
m,n(u), connected to the sum node

Sn, is less than or equal to ϕth(El). It can be given as

p(i)
m,n =

L∑
l=1

M−1∑
u=0

p(i)(u)P
{

Θ(i)
m,n(u) 6 ϕth(El)

}
Γl, (D.1.1)

where p(i)(u), defined in (5.8), represents the probability of k edges connected to a

given sum node, out of which k−u edges are resolved in the previous iterations, but

u edges are still connected to burst node Bm’s edge in the ith iteration. To compute

p(i)(u), we need to know Ψk which in the asymptotic setting, when N → ∞, can

be given as [121]

Ψk = e−
αk+1

k! , (D.1.2)

where α = ΛM
N

is the average degree of a sum node, and Λ is the average degree

of a burst node given as Λ =
∑

d Λdd.

Next, we need Θ
(i)
m,n(u), in order to know the cumulative weight of edges on

a sum node Sn, which may vary from iteration to iteration depending upon the

145



146

number of connected edges u. It is given as

Θ(i)
m,n(u) =

u∑
c=0

Wc,n, 0 6 u 6M − 1, (D.1.3)

where Wc,n represents the edge weight of burst node Bc, ∀c ∈Mn \ Bm, connected

with sum node Sn. A burst node selects weight equal to El with probability Γl

which is defined in (5.1). Using (D.1.3), the probability in (5.5) can be numerically

evaluated.

Since, the selection of any sum node is equally probable, it implies that p
(i)
m,n =

p
(i)
m,n′ , for n 6= n′, where n, n′ ∈ Nm. Thus, p

(i)
m = p

(i)
m,n, which is given by (D.1.1).

Recall, the OR rule for success and AND rule for error explained in Section 5.3.

Thus, the recovery-error probability for burst node Bm with node degree d = |Nm|,
in the ith iteration, is equal to (1 − p(i)

m )d. By averaging it over the degree distri-

bution represented by {Λd}, defined in (5.1), yields

q(i)
m =

∑
d

Λd

(
1− p(i)

m

)d
(D.1.4)

Substituting the value of p
(i)
m from (D.1.1) in (D.1.4), yields (5.7).
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