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Abstract

This thesis is focussed on the development of new signal processing techniques to

analyse signals defined on the sphere. Analysis and processing of signals defined

on the sphere find applications in various fields of science and engineering, such

as cosmology, geophysics and medical imaging. The objective to develop new sig-

nal processing methods is served by formulating, extending and tailoring existing

Euclidean domain signal processing theories in ways that they become suitable for

analysis of signals defined on the sphere.

The first part of this thesis develops a new type of convolution between two

signals on the sphere. This is the first type of convolution on the sphere which

is commutative. Two other advantages, in comparison with existing definitions in

the literature, are that the new convolution admits anisotropic filters and signals

and the domain of the output remains on the sphere. The spectral analysis of the

convolution is provided and a fast algorithm for efficient computation of convolution

output is developed.

The second part of the thesis is focused on the development of signal processing

techniques to analyse signals on the sphere in joint spatio-spectral (spatial-spectral)

domain. A transform analogous to short-time Fourier transform (STFT) in time-

frequency analysis is formulated for signals defined on the sphere, in order to devise

a spatio-spectral representation of a signal. The proposed transform is referred as

the spatially localized spherical harmonic transform (SLSHT) and is defined as

windowed spherical harmonic transform, resulting in the SLSHT distribution. The

properties of the SLSHT distribution and its analysis in the spherical harmonic

domain are also provided. Furthermore, examples are provided to demonstrate

the capability of SLSHT to reveal spatially localized spectral contents in a signal

that were not obtainable from traditional spherical harmonics analysis. With the

consideration that data-sets on the sphere can be of considerable size and the

SLSHT is intrinsically computationally demanding depending on the band-limits
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of the signal and window, a fast algorithm for the efficient computation of the

transform is developed. The floating point precision numerical accuracy of the fast

algorithm is demonstrated and a full numerical complexity analysis is presented.

A general framework for spatially-varying spectral filtering of signals defined on

the unit sphere is also developed, as an analogy to joint time-frequency filtering.

For spatio-spectral filtering, the spherical signals are first mapped from the spatial

domain into a joint spatio-spectral domain using SLSHT, where a spatio-spectral

signal transformation or modification is introduced. Next, a suitable scheme to

transform the modified signal from the spatio-spectral domain back to an admissi-

ble signal in the spatial domain using the least squares approach is proposed. It is

shown that the overall action of the SLSHT and spatio-spectral signal modification

can be described through a single transformation matrix, which is useful in prac-

tice. Finally, two specific and useful instances of spatially-varying spectral filtering

are presented, defined through multiplicative and convolutive modification of the

SLSHT distribution. The proposed framework enables filtering or modification in

the spatio-spectral domain which cannot be carried out in either the spatial or

spectral domain.
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Notations

x scalar variable

x vector variable

x̂ unit vector

X matrix variable

Xx,y element in row x and column y of X

〈f, g〉 inner product of two variables f and g

‖(·)‖p Lp norm

‖(·)‖ L2 norm

‖(·)‖HS Hilbert-Schmidt norm

|(·)| absolute value of parameter (·)
(·) conjugate operation

(·)′ transpose operation on vector

(·)T transpose operation on vector

(·)H Hermitian (conjugate transpose) operation

b(·)c floor function

δp,q Kronecker delta

δ() Dirac delta

S(L) Equiangular tessellation on the sphere

C(L) Equiangular tessellation on SO(3)

(`,m)↔ n mapping of two variables (`,m) to single variable n using rule c.f. (2.17)

(f)m` spherical harmonic transform of degree ` and order m
d
dx

derivative with respect to x

? Anisotropic convolution operand

} Isotropic convolution operand

max() maximum of the parameters

min() minimum of the parameters

diag(x) a diagonal matrix with diagonal elements given by vector x

d (·) e Integer ceiling function
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Chapter 1

Introduction

1.1 Motivation and Background

The main focus of this thesis is to develop novel signal processing techniques for

the analysis of data and signals defined on the unit sphere (or 2-sphere1), denoted

by S2. The analysis and processing of signals defined on the sphere has been an

active area of research in the past two decades. Signals that are inherently defined

on the sphere appear in many applications found in various fields of science and

engineering. These applications include surface analysis in medical imaging [2, 3],

geodesy and planetary studies [1,4,5], computer graphics and computer vision [6–9],

planetary science [5], electromagnetic inverse problems [10], study and analysis of

cosmic microwave background (CMB) in cosmology [11–17], 3D beamforming [18]

and wireless channel modeling in communication systems [19].

The essence of signal processing embeds the notions of signals and linear sys-

tems; filtering, smoothing; prediction; detection and estimation in the presence of

noise; feature extraction. Signal processing techniques and theories have been thor-

oughly investigated and explored, primarily based on the assumption that signals

are defined on the real line, which is conventionally identified with time. Further,

conventional multidimensional signal processing, where signals are defined on a

multidimensional Euclidean domain, is a natural generalization that has also been

extensively researched.

For the processing of signals on the sphere, the mapping of the data on the

sphere to a two dimensional plane, enables the use of signal processing methods

1In the sequel, “unit sphere”, “2-sphere” or simply “sphere” refer to the same thing.
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developed for Euclidean domain, but this procedure introduces errors. This is due

to the fact that the modeling of the signal defined on the sphere in the Euclidean

domain is not suitable. For example, the curvature needs to be taken into account

in planetary studies, especially for small heavenly bodies such as the Earth and the

Mars [20]. Therefore it is often required that signal processing techniques developed

for the Euclidean domain be extended and reformulated in non-trivial ways so that

they are suitable and well-defined for the spherical domain.

Extension of signal processing techniques developed for Euclidean signals is

a natural and sensible approach to analyze the signals inherently defined on the

sphere. In this context, many signal processing techniques have been tailored and

extended from the Euclidean domain to the spherical domain [4, 15, 16, 21–30].

These include convolution [31–33], filtering [25, 30, 34], feature extraction [5, 24]

and spectrum estimation [1,20], finite-impulse-response (FIR) filtering [26], Slepian

concentration problem [35–38] on the sphere [1,27,39], to name a few. Among these

developments, the most fundamental notion is the analog of Fourier transform,

which corresponds to spherical harmonic transform [10,31,40,41] for signals on the

sphere. By definition of the spherical harmonic transform, any signal on the sphere

can be expanded in terms of spherical harmonic functions (or spherical harmonics

for short), and therefore, the spherical harmonic coefficients constitute the spectral

domain representation of any signal defined on the sphere. We also note the work

in the mathematical literature (e.g., [42,43]) providing algebraic view of the signal

processing methods, based on which a group theoretic formulation of continuous

spherical wavelets is proposed in [21,44].

This thesis is predominantly focussed on the formulation and the development

of signal processing techniques to analyze signals defined on the sphere. In the

remainder of this chapter, we first review the previous work on development of

signal processing techniques on the sphere. Then we discuss the research problems,

which are to be investigated in this thesis. Finally, we provide the summary of our

contributions and outline of thesis.

1.1.1 Convolution on the Sphere

One important signal processing tool is convolution between two signals defined on

the unit sphere, which is fundamental for filtering applications. While there are

various formulations of convolution on the sphere [28, 30, 31, 45–47], these do not
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serve as an analog of the Euclidean-domain convolution as they lack some desired

or expected properties as we explain below.

One well-known and widely-used definition for convolution on the unit sphere

appears in [31], which has been generalized for the n-sphere and applied for esti-

mation of probability density functions in [48]. The advantage of this convolution

is that it results in a simple multiplication of the spectral (spherical harmonic)

coefficients of the signal and the filter in the Fourier domain. However, the con-

volution involves full rotation of the filter by all independent Euler angles which

includes an extra averaging over the first rotation about the z−axis. This is pre-

sumably done to ensure that the output domain of convolution is S2, but it results

in smoothing the filter by projecting it into the subspace of azimuthally symmetric

signals. Consequently, this convolution becomes identical to a simpler isotropic

convolution [46, 47] as shown in [32]. In contrast to conventional convolution in

the Euclidean domain, due to excessive smoothing, convolution in [31,46,47] is not

commutative and discards information.

Another definition of convolution for signals on the unit sphere can be found

in [30,45] and has been referred to as directional correlation in [28], since it preserves

the directional features of both the signal and filter. The convolution involves full

rotation of the filter by all independent Euler angles and a double integration

over the points on the unit sphere. While this results in a desired directional

or anisotropic convolution, the output remains a function of the three rotations

applied to the filter and consequently, the output domain is not S2. Moreover,

the convolution is not commutative. From the discussion above, it becomes clear

that existing definitions of the convolution do not serve as direct analog of the

convolution definition in Euclidean domain.

1.1.2 Spatially Localized Spherical Harmonic Transform and

Spatio-spectral Analysis on the Sphere

For analysis of signals on the sphere, many signal processing techniques have

been developed and extended from the Euclidean domain to the spherical do-

main [4, 15, 16, 21–25, 27–30]. At their core, most of these techniques process the

signal directly either in the spatial spherical domain or in the spectral domain,

formed by spherical harmonic coefficients. Since the spherical harmonic functions

are not spatially concentrated functions on the sphere, spherical harmonic coef-
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ficients provide information about global contribution of spherical harmonics in

the signal and do not convey any insight about the localized contribution of the

spherical harmonics. Therefore, in addition to the information given by spherical

harmonic transform, the signal analysis techniques are essentially required to reveal

the localization of features in the signal.

In order to obtain and analyze the localized spectral contents of signals defined

on the sphere, wavelets have been extensively investigated and explored due to

their ability to resolve localized signal content in both space and scale. Wavelet

techniques for signals on the sphere were originally established in a group theo-

retic framework [21, 44, 49–51]. Inspired from this original work and following the

formulation of wavelets on Euclidean domain, more practical and different notions

of wavelets have been developed in recent works [15, 16, 22–24, 28–30, 49], These

developed wavelet techniques have been utilized in various applications (e.g., in

astrophysics [13, 14, 52–55] and geophysics [5, 56, 57]). Some of the wavelet tech-

niques on the sphere also incorporate directional phenomena in the spatial-scale

decomposition of a signal (e.g., [5, 28–30]).

An alternative to the wavelet (i.e., spatial-scale) approach is a “spatio-spectral”

(spatial-spectral) approach, where the goal is to obtain a joint spatio-spectral rep-

resentation of signals defined on the sphere. Analogous to windowed Fourier trans-

form in the Euclidean domain, the localized spectral analysis, composed of spatial

windowing followed by spherical harmonic transform, was first devised in [4], and

was used to interpret global estimates of the gravity and topography of Venus in

the context of geodynamical models. It is also shown that the localized transform is

invertible by spatial averaging of the transform. The effectiveness of the transform

to reveal the localized spectral contents of a signal, however, depends on the chosen

window function. The authors in [4] use azimuthally symmetric spectrally trun-

cated window function which is concentrated in the spectral domain, but exhibits

sidelobes in the spatial domain. Since the simultaneous localization of a window

in spatial and spectral domains determines the quality of the global estimates of

topography and gravity, the eigenfunctions obtained from Slepian concentration

problem on the sphere [27] are used as window functions in [1,20,58], where again

azimuthally symmetric window functions have been used for windowing in the spa-

tial domain. In these investigations, the localized spectral analysis has been carried
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out with an objective to estimate the spectrum2 of the signal. However, it can also

be used to obtain the spatio-spectral representation of the signal that reveals the

contribution of spectral contents in any spatially localized region. The domain of

such representation is jointly spatial and spectral, or spatio-spectral for short.

The localized spectral analysis method, composed of windowing in the spa-

tial domain followed by the spherical harmonic transform, is analogous in nature

and spirit to the short-time Fourier transform (STFT) in time-frequency analysis.

In time-frequency analysis, STFT has been under exploration for the last half of

the century (e.g. [59–68]). The absence of cross terms in the STFT representa-

tion of a signal, which appear in quadratic distributions like Wigner, makes the

STFT a more attractive choice to study signals in time-frequency domain than

using quadratic type distributions [65, 69]. In addition, the magnitude-wise shift

invariance property of the STFT in both time and frequency domains simplifies the

interpretation of the time-frequency representation of the signal [69]. Since STFT

reveals the time dependence and evolution of the signal spectrum, it has been used

in many applications. These include obtaining of localized frequency contents and

spectral estimation of non-stationary signals [61], analysis of speech signals [70],

radar applications [71] and time-varying filtering [72–74].

1.1.3 Filtering in the Spatio-spectral Domain

Representation of a signal in the spatio-spectral domain depicts how its spectral

contents are changing with space, that is, it provides information about spatially

varying spectral components in a signal. Moreover, the spatio-spectral representa-

tion gives an indication as to which spectral components of the signal are present

at a given spatial position and their relative amplitude, thus it reveals the local-

ized spectral contents. Consider an analogy in time-frequency domain: the time

frequency representation of a signal is conceptually a musical score with frequency

running along one axis and time along the other, and the time-frequency represen-

tation indicates the frequency content, the timing information, and the duration

of various dominant signal components [75]. Such representations are useful for

the analysis, modification, synthesis, and detection of a variety of non-stationary

signals with time-varying spectral content [76].

2It must be noted here that the word spectrum refers to normalized energy of the signal
per spherical harmonic degree [1, 4, 20], and must not be confused with the spectral domain
representation of the signal.
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Most of the existing signal processing techniques developed on the sphere either

process the signal directly either in the spatial (spherical) domain or in the spectral

domain. However, there are situations where analysis and modification of spherical

signals jointly or simultaneously in spatial and spectral domains is required. This is

particularly important when we wish to reveal and modify spatially-varying spectral

contents of signals. For this purpose, the spherical harmonic transform is not

adequate because it cannot directly enlighten the “localized” spatial contributions

of a signal in the spectral domain. For example, consider the convolutive smoothing

in the spatial domain [31,77], which is equivalent to the multiplication of the signal

and filter spherical harmonic coefficients in spectral domain. Therefore, the same

filter is used for smoothing the signal at all spatial positions and it is not possible

to apply a spatially-varying operation in the spectral domain and vice versa. This

motivates the need to look for suitable joint spatio-spectral signal transformations

on the unit sphere.

The closest class of related work is the extension of Euclidean wavelets to spher-

ical wavelets, which enables filtering at different scales [5,15,21,22,24,29,78]. The

theoretical conditions on the invertibility of spherical wavelet transform are pre-

sented in [30] and the proposed framework is illustrated using wavelets that provide

space-scale decomposition. However, to the best of our knowledge, there exists no

framework that directly deals with signal transformations and modifications in joint

spatio-spectral domain rather than in joint spatial and scale (wavelet) domains.

Interestingly the Euclidean counterpart, namely joint time-frequency signal

analysis and filtering, has been well established for several decades [73, 74, 79–81].

In particular, the short-time Fourier transform (STFT) and its variations [64, 66,

67,73,74,80,81] have triggered research to generalize the concepts of filtering theory

to joint time-frequency domain. Saleh and Subotic presented an interesting and

novel approach of time-frequency filtering in [74], where they devised the modifica-

tion of the STFT representation of signal as masking with the filter function in the

time-frequency domain. A similar concept is also adopted in [72] for discrete-time

signals and is generalized in [73] for different operations in time-frequency domain.
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1.1.4 Directional Localized Spherical Harmonic Transform

and Fast Algorithms for Spatio-spectral Analysis

The use of an azimuthally symmetric window function in obtaining the spatio-

spectral representation of a signal provides mathematical simplifications, however,

such an approach cannot discriminate localized directional features in the spatio-

spectral domain. This motivates the use of asymmetric window functions in the

spatio-spectral transformation of a signal using the spatially localized spherical

harmonic transform. Analogous to the STFT representation in time-frequency

analysis, the definition of the localized spherical harmonic transform in [4] can be

employed to define the spatio-spectral representation of a signal using azimuthally

asymmetric window functions for spatial localization. The use of an asymmetric

window function enables the transform to reveal directional features in the spatio-

spectral domain.

Furthermore we note that the development of fast algorithms for the com-

putation of spatio-spectral representation of signal is of considerable importance.

This is due to the fact that the data-sets on the sphere can be of considerable

size (e.g., three million samples on the sphere for current data-sets [82] and fifty

million samples for forthcoming data-sets [83]), for which the computation of the

spatio-spectral representation of a signal becomes computationally challenging.

1.2 Overview and Contribution of Thesis

The focus of this thesis is to revisit existing signal processing theories on the sphere

and develop new techniques which enable the analysis of signals in spatio-spectral

domain. Moreover, the problem of developing fast algorithms for the proposed

techniques is also addressed.

1.2.1 Questions to be Answered

Following the literature review presented in Section 1.1, we pose the following

questions that are answered in this thesis:

Q1. How should the convolution be defined on the sphere such that it serves as

counterpart of Euclidean convolution and satisfies the properties like commu-

tativity and being anisotropic in nature? If such a convolution can be defined,
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how can we evaluate the convolution output in computationally efficient man-

ner?

Q2. How can we develop a tool, analogous to STFT in time-frequency analysis,

for signals on the sphere to obtain such a representation of a signal in joint

spatio-spectral domain, which can reveal the localized contribution of spectral

contents in a signal?

Q3. How should we suitable window function for spatial localization in obtaining

localized spherical harmonic transform?

Q4. For signals on the sphere, how can we formulate the concentration uncertainty

principle that relates the signal concentration in spatial and spectral domains?

Q5. Given the spatio-spectral representation of a signal on the sphere, how can we

perform filtering operations on the signal in spatio-spectral domain?

Q6. Once the spatio-spectral representation of a signal is modified as a result of

processing or filtering in the spatio-spectral domain, how can we obtain a

physically valid signal on the sphere that “best” corresponds to the modified

spatio-spectral representation?

Q7. What are the potential candidates for spatio-spectral filtering operations and

how can these joint-domain operations be formulated as linear transformations

of the signal in spatial or spectral domain?

Q8. How can we obtain the information about the directional features of the signal

in the spatio-spectral domain?

Q9. How can we efficiently compute the spatio-spectral representation of a signal?

1.2.2 Thesis Contributions and Organization

Fig. 1.1 depicts the flowchart of the thesis. The mathematical background is pre-

sented in Chapter 2. The first original contribution in this thesis (Chapter 3) is

based on finding the counterpart of Euclidean convolution on the unit sphere. The

second part of the thesis (Chapters 4-6) develops signal analysis in the spatio-

spectral domain. The second part can be further categorized into development of
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Figure 1.1: Thesis Flow Chart.

techniques to obtain spatio-spectral representation (Chapter 4), signal transforma-

tions in the spatio-spectral domain (Chapter 5), and incorporating directional phe-

nomena in the spatio-spectral domain and development of fast algorithms (Chapter

6).

The summary of the contributions in each chapter is as follows:

Chapter 3 - Commutative Anisotropic Convolution

In Chapter 3, we consider the problem of defining convolution on the sphere that

is analogous to the familiar Euclidean-domain R2 convolution in many ways. We

first revisit the existing definitions of convolution on the sphere and then propose

a new definition of convolution. Following the discussion in Section 1.1.1, we note

that the existing definitions in the literature are not analogous in nature to the

Euclidean domain convolution. The new contributions in this chapter are

1. We prove that, in order to obtain desired properties, not all independent

Euler rotations should be involved in the definition of convolution. Instead,

we introduce a controlled dependency between the two rotations of the filter

about the z−axis. Therefore, there are only two degrees of freedom in the

convolution. We highlight that the same philosophy has been rightfully ap-

plied to convolution in the 2-dimensional Euclidean space, R2, where not all
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three proper “isometries” of the space (2 translations and one rotation) are

involved in convolution.

2. We propose a new definition of convolution on the sphere with the following

desired properties:

• In contrast to the averaging over all possible rotations, it is formulated

considering the rotations characterized by two parameters, which agrees

with the fact that S2 is two dimensional;

• It generates an output whose domain remains in S2;

• It is anisotropic in nature, i.e., the directional features of both filter and

signal contribute towards the output of convolution;

• It is commutative, that is, changing the roles of filter and signal does

not change the outcome of convolution.

3. We formulate and analyze the proposed convolution in the spectral (spherical

harmonic) domain.

4. We also present a fast algorithm for the efficient computation of the proposed

convolution. In the development of a fast algorithm, we employ the factoring

of rotation approach followed by separation of variables technique.

The results in Chapter 3 have been presented in the following publications which

are listed again for ease of reference:

J2. P. Sadeghi, R. A. Kennedy, and Z. Khalid, “Commutative Anisotropic Con-

volution on the 2-Sphere,” IEEE Trans. Signal Process., vol. 60, no. 12, pp.

6697–6703, Dec. 2012.

C2. Z. Khalid, R. A. Kennedy, and P. Sadeghi, “Efficient Computation of Com-

mutative Anisotropic Convolution on the 2-Sphere,” in 5th International Con-

ference on Signal Processing and Communication Systems, ICSPCS’2011, Gold

Coast, Australia, Dec. 2012.

Chapter 4 - Spatially Localized Spherical Harmonic Transform for

Spatio-spectral Analysis

In Chapter 4, we consider the development of a tool for signals on the sphere,

analogous to STFT in time-frequency analysis, to obtain the signal representation
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in spatio-spectral domain. We use the definition of a spatially localized transform

in [1, 4] to obtain the spatio-spectral representation of a signal. Later, we analyze

different window functions from the perspective of an uncertainty principle. The

concentration uncertainty principles that relate the simultaneous concentration of

a signal in the spatial and spectral domain are also derived in Chapter 3. The main

contributions in Chapter 3 are summarized below:

1. We develop a tool called the spatially localized spherical harmonic transform

(SLSHT) to represent a signal on the unit sphere in a joint spatio-spectral do-

main. We give a matrix representation of this transform operation, resulting

in the spatio-spectral representation which we call the SLSHT distribution.

The SLSHT is defined as spherical harmonic transform of the spatially local-

ized signal, where spatial localization is achieved using a window function.

Applying the SLSHT distribution to the example of the Mars topographic

map shows the ability of the transform to reveal spatially-localized spectral

contributions.

2. We introduce a transform operation inspired by the characteristic function

in time-frequency analysis [65]. This transform operation results in a new

spatio-spectral distribution, which we call complementary distribution. We

investigate the properties of complementary distribution and derive the re-

sults that relate the signal, the window function and the complementary

distribution.

3. We discuss the inherent trade-off between the spatial and spectral resolution

of the window function from the perspective of the uncertainty principle.

4. Finally, we present a concentration uncertainty principles for signals on the

sphere which relate the localization of the concentration of a signal in spatial

and spectral domains.

The results in Chapter 4 have been presented in the following publications which

are listed again for ease of reference:

J1. Z. Khalid, S. Durrani, P. Sadeghi, and R. A. Kennedy, “Spatio-spectral Anal-

ysis on the Sphere using Spatially Localized Spherical Harmonics Transform,”

IEEE Trans. Signal Process., vol. 60, no. 3, pp. 1487–1492, Mar. 2012.
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C1. Z. Khalid, S. Durrani, R. A. Kennedy, and P. Sadeghi, “Concentration Un-

certainty Principles for Signals on the Unit Sphere,” in Proc. IEEE Int. Conf.

Acoust., Speech, Signal Process., ICASSP’2012, Kyoto, Japan, Mar. 2012.

Chapter 5 - Spatially Localized Spherical Harmonic Transform for

Spatio-spectral Analysis

In Chapter 5, we present a framework for filtering and modification of signals

in the joint spatio-spectral domain. The SLSHT distribution of a signal presented

in Chapter 4 is processed in the joint spatio-spectral domain to yield the modified

distribution and transformed back to the spatial domain using a suitably devised

inverse operation. Due to the modification of the SLSHT distribution, there is a

possibility that there exists no physical signal which corresponds to the modified

distribution—an analogous problem is well known in time-frequency analysis [73,

74,79–81]. Therefore, there is a need to find the signal that best approximates the

modified distribution. The main contributions in this chapter are:

1. We present a general formulation of an integral operator that transforms the

SLSHT distribution of a signal to a modified spatio-spectral distribution. We

also formulate this spatio-spectral modification as a linear transformation of

the signal in the spectral domain.

2. For the case when the modified spatio-spectral distribution is not a valid

SLSHT distribution, we devise a suitable inverse spatio-spectral transform,

which finds a signal whose distribution best approximates the modified dis-

tribution in the least squares sense.

3. Using the proposed paradigm of signal transformation, we investigate two

types of filtering operations in spatio-spectral domain. First we consider fil-

tering as multiplication of the filter function defined in spatio-spectral domain

and the given SLSHT distribution. Next, we perform filtering as convolution

of the filter function and the SLSHT distribution of a signal. In contrast to

the conventional spatially-invariant spectral filtering, these types of filtering

operations can be thought as spatially-varying spectral filtering of signals in

the spatio-spectral domain.

The results in Chapter 5 have been presented in the following publication which

is listed again for ease of reference:
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J3. Z. Khalid, P. Sadeghi, R. A. Kennedy, and S. Durrani, “Spatially Varying

Spectral Filtering of Signals on the Unit Sphere,” IEEE Trans. Signal Process.,

vol. 61, no. 3, pp. 530–544, Feb. 2013.

Chapter 6 - Spatially Localized Spherical Harmonic Transform for

Spatio-spectral Analysis

In Chapter 4, the SLSHT distribution for spatio-spectral representation of a

signal is defined as localized spherical harmonic transform, where we use an az-

imuthally symmetric window function. The transformation of the signal in the

spatio-spectral domain using the SLSHT distribution is explored and investigated

in Chapter 5. The use of an azimuthally symmetric window function provides

mathematical simplifications in obtaining the spatio-spectral representation of the

signal, however, the use of a symmetric function may not be able to discrimi-

nate localized directional features in the spatio-spectral domain. This motivates us

to use asymmetric window functions for spatial localization in the spatio-spectral

transformation of a signal. In order to serve this objective, we define the SLSHT

and the SLSHT distributions using azimuthally asymmetric window functions for

spatial localization. Since the use of an asymmetric window function enables the

transform to reveal directional features in the spatio-spectral domain, we call the

proposed transform the directional SLSHT and the spatio-spectral representation

as directional SLSHT distribution. We also provide a harmonic analysis of the

proposed transform and present an inversion relation to recover the signal from

its directional SLSHT distribution. Furthermore, we develop fast algorithms for

the evaluation of directional SLSHT distribution. The main contributions in this

chapter are:

1. We present the directional SLSHT to transform a signal on the sphere onto

its joint spatio-spectral domain as a directional SLSHT distribution. The

directional SLSHT is composed of SO(3) spatial localization followed by the

spherical harmonic transform.

2. We propose the use of an azimuthally asymmetric window function to obtain

spatial localization, which enables the transform to resolve directional fea-

tures in the spatio-spectral domain. We also present an inversion relation to

synthesize the original signal from its directional SLSHT distribution using

our formulation.
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3. Since data-sets on the sphere arising in applications are of considerable size,

we develop a fast algorithm for the efficient computation of the directional

SLSHT distribution of a signal. The computational complexity of comput-

ing the directional SLSHT is reduced by providing an alternative harmonic

formulation of the transform and then exploiting the factoring of rotation

approach [84] and the fast Fourier transform. We also study the numerical

accuracy and the speed of our fast algorithm.

4. Since the directional SLSHT distribution relies on a window function for spa-

tial localization, we analyze the band-limited window function obtained from

the Slepian concentration problem on the sphere, with nominal concentration

in an elliptical region around the north pole. We also provide an illustration

that highlights the capability of the directional SLSHT to reveal directional

features in the spatio-spectral domain. This capacility is likely to be of use

in many applications.

The results in Chapter 6 have been presented in the following publication which

is listed again for ease of reference:

J4. Z. Khalid, R. A. Kennedy, S. Durrani, P. Sadeghi, Y. Wiaux, and J. D. McEwen,

“Fast Directional Spatially Localized Spherical Harmonic Transform,” IEEE

Trans. Signal Process., 2013. (Accepted)

Finally, Chapter 7 gives a summary of the thesis results and provides suggestions

for future research work.



Chapter 2

Signals on the Sphere and

Mathematical Background

In this chapter, we introduce important concepts related to signals defined on

the unit sphere, in order to provide mathematical background and to clarify the

adopted notation used in later chapters.

2.1 Hilbert Space L2(S2)

2.1.1 Unit Sphere Domain

Let S2 denote the 2-sphere or unit sphere domain, which is defined as

S2 , {x ∈ R3 : ‖x‖ = 1} (2.1)

where x denotes the vector in 3-dimensional Euclidean or Cartesian domain R3

and ‖x‖ denotes the Euclidean norm. The points on the S2 belong to R3 but the

unit sphere is different from R3 in a way that it is bounded and has a constant

non-zero curvature.

By definition, a vector representing a point on the sphere is a unit vector,

and is parameterized in terms of spherical coordinates. We define two such unit-

norm vectors, x̂ and ŷ, represented in the spherical coordinates as x̂ ≡ x̂(θ, φ) ,
(sin θ cosφ, sin θ sinφ, cos θ)′ ∈ S2 and ŷ ≡ ŷ(ϑ, ϕ) , (sinϑ cosϕ, sinϑ sinϕ, cosϑ)′

∈ S2, respectively, where (·)′ denotes matrix or vector transpose. θ, ϑ ∈ [0, π] repre-

sent the co-latitude or elevation measured with respect to the positive z−axis and

15
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φ, ϕ ∈ [0, 2π) represent the longitude or azimuth and are measured with respect

to the positive x−axis in the x−y plane. The dot product between two vectors x̂

and ŷ, representing two points on the sphere, is related to the the central angle ∆s

between the vectors x̂ and ŷ,

x̂ · ŷ = cos4s

(
(θ, φ), (ϑ, ϕ)

)
= sin θ sinϑ cos(φ− ϕ) + cos θ cosϑ. (2.2)

2.1.2 Signals on the Sphere - Hilbert Space L2(S2)

We consider complex-valued functions, such as f(θ, φ) = f(x̂) and h(θ, φ) = h(x̂),

defined on the unit sphere. Define the inner product

〈
f, h
〉
,
∫

S2
f(x̂)h(x̂) ds(x̂), (2.3)

where ds(x̂) = sin θ dθ dφ is the area element, (·) denotes complex conjugate and

the integration is carried out over the whole unit sphere. The inner product in

(2.3) induces a norm ‖f‖ , 〈f, f〉1/2. Finite energy functions defined on the unit

sphere, such that ‖f‖ < ∞, are referred as “signals on the unit sphere”. Signals

on the sphere form a Hilbert space L2(S2) under the inner product defined in (2.3).

Throughout this thesis, functions with finite induced norm belonging to L2(S2) are

referred as signals on the sphere or signals for short.

2.1.3 Spherical Harmonics

The Hilbert space L2(S2) is separable and the spherical harmonic functions (or

spherical harmonics for short) form the archetype complete orthonormal set of

basis functions. The spherical harmonic, Y m
` (x̂) = Y m

` (θ, φ), for degree ` ≥ 0 and

order |m| ≤ ` is defined as [40]

Y m
` (θ, φ) = Nm

` P
m
` (cos θ) eimφ, (2.4)

where Nm
` is the normalization factor given by

Nm
` ,

√
2`+ 1

4π

(`−m)!

(`+m)!
, (2.5)
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which ensures that ‖Y m
` ‖ = 1. Pm

` (x) in (2.4) is the associated Legendre function

defined for degree ` and order 0 ≤ m ≤ ` as [40,85]

Pm
` (x) =

(−1)m

2``!
(1− x2)m/2

d`+m

dx`+m
(x2 − 1)` (2.6)

P−m` (x) = (−1)m
(`−m)!

(`+m)!
Pm
` (x), (2.7)

for |x| ≤ 1. The zero order associated Legendre polynomials are referred as Legen-

dre polynomials (P`(x)), that is, P 0
` (x) = P`(x).

2.1.4 Properties of Spherical Harmonics

Orthonormality

With the definition of spherical harmonic functions in (2.4), they satisfy the or-

thonormality condition

〈
Y m
` , Y

q
p

〉
= δ`,pδm,q, (2.8)

where δm,q is the Kronecker delta function: δm,q = 1 for m = q and is zero otherwise.

Spherical Harmonics Addition Theorem

We also note one of the important property of spherical harmonics, known as

spherical harmonics addition theorem [85]

∑̀

m=−`
Y m
` (x̂)Y m

` (ŷ) =
2`+ 1

4π
P 0
` (cos ∆s) (2.9)

where cos ∆s = x̂ · ŷ is defined in (2.2). Furthermore, the completeness relation on

the sphere is given by [85]

∞∑

`=0

∑̀

m=−`
Y m
` (x̂)Y m

` (ŷ) = (sin θ)−1δ(θ − ϑ) δ(φ− ϕ). (2.10)
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Complex Conjugate Property

We also note the following relation between Y m
` (x̂) and Y −m` (x̂)

Y m
` (x̂) = (−1)mY −m` (x̂). (2.11)

2.1.5 Spherical Harmonic (Fourier) Transform

By completeness of spherical harmonics [10], any signal f ∈ L2(S2) can be expanded

as

f(x̂) =
∞∑

`=0

∑̀

m=−`
(f)m` Y

m
` (x̂), (2.12)

where

(f)m` ,
〈
f, Y m

`

〉
=

∫

S2
f(x̂)Y m

` (x̂) ds(x̂), (2.13)

is the spherical harmonic Fourier coefficient (or spherical harmonic coefficient for

short) of degree ` and order m. The equality in (2.12) is understood in terms of

convergence in the mean (strong convergence in the norm)

lim
L→∞

‖f(x̂)−
L∑

`=0

∑̀

m=−`
(f)m` Y

m
` (x̂)‖ = 0. (2.14)

The signal f ∈ L2(S2) is said to be band-limited with maximum spherical

harmonic degree or spectral degree or band-limit Lf if (f)m` = 0 for ` > Lf .

The signal f ∈ L2(S2) is said to be azimuthally symmetric if all of the non-zero

order spherical harmonic coefficients are zero, that is, if (f)m` = 0 for m 6= 0.

Using (2.12) and employing the orthonormality of spherical harmonics, we can

obtain the following Parseval relation

‖f‖2 =
〈
f, f
〉

=
∞∑

`=0

∑̀

m=−`
|(f)m` |2. (2.15)

2.1.5.1 Shorthand Notations and Vector Notation

In the following we may use the following shorthand notations

∞∑

`=0

∑̀

m=−`
,

∞∑

`,m

,

L∑

`=0

∑̀

m=−`
,

L∑

`,m

(2.16)
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for brevity. For notational simplifications, we may also express the spherical har-

monic Y m
` as Yn and the spherical harmonic coefficient (f)m` as (f)n. That is, as

a function of a single integer index n instead of two integer indices ` and m, using

the one-to-one mapping

(`,m)↔ n, n = `2 + `+m, ` = b√nc, m = n− b√nc(b√nc − 1), (2.17)

where b · c denotes the integer floor function. We will also deal with the spherical

harmonic coefficients in vector form. Using the mapping defined in (2.17), we define

f =
(
(f)0, (f)1, (f)2, · · ·

)′
=
(
(f)0

0, (f)−1
1 , (f)0

1, (f)1
1, · · ·

)′
(2.18)

as the spectral response of the signal f . For a band-limited signal f with band-limit

Lf , f =
(
(f)0, (f)1, (f)2, · · · , (f)Nf

)′
, where Nf = L2

f + 2Lf . For an azimuthally

symmetric signal f , define f 0 =
(
(f)0

0, (f)0
1, (f)0

2, · · ·
)′

.

2.1.5.2 Spherical Harmonic (Fourier) Transform Operator

Define the operator F , which transforms the signal f(x̂) into its spectral response

f as

f =
(
Ff
)
(x̂). (2.19)

Also the inverse spherical harmonic transform F−1 is well-defined such that F−1f =

f(x̂).

2.1.6 Spherical Dirac Delta Function

The Dirac delta function δ(x̂, ŷ) on the sphere with the sifting property

f(x̂) =

∫

S2
δ(x̂, ŷ)f(ŷ) ds(ŷ), (2.20)

has following expansion in spherical harmonic domain (see completeness relation

in (2.10))

δ(x̂, ŷ) =
∞∑

`,m

Y m
` (x̂)Y m

` (ŷ). (2.21)

Note that δ(x̂, ŷ) /∈ L2(S2).
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2.1.7 Useful Subspaces of L2(S2)

The set of band-limited signals, such as f(x̂) ∈ L2(S2), with the maximum spectral

degree Lf such that (f)m` = 0 for ` > Lf forms a (Lf + 1)2 dimensional closeed

subspace of L2(S2) and is denoted by HLf .

The set of azimuthally symmetric functions which are independent of the az-

imuth angle (such that f(x̂) = f(θ, φ) = f(θ)) forms a subspace of L2(S2) and is

denoted by H0. In this case, only the zero-order spherical harmonic coefficients of

f are non-zero. That is (f)m` = 0 for all m 6= 0. Mathematically, any signal f ∈ H0

can be expressed as

f(θ, φ) = f(θ) =
∞∑

`=0

(f)0
`Y

0
`

=

√
2`+ 1

4π
(f)0

`P`(cos θ). (2.22)

Completeness of H0 follows from the completeness of Legendre polynomials [85].

2.1.8 Spherical Harmonics Triple Product

The spherical harmonics triple product is given by

T (u; r;n) = T (s, t; p, q; `,m) =,
∫

S2
Yr(x̂)Yu(x̂)Yn(x̂) ds(x̂) (2.23)

with mappings (s, t) ↔ u, (p, q) ↔ r and (`,m) ↔ n. The triple product can be

expressed in terms of Wigner-3j symbols [40] as

T (u; r;n) = T (s, t; p, q; `,m) = (−1)m
√

(2s+ 1)(2p+ 1)(2`+ 1)

4π(
s p `

0 0 0

)(
s p `

t q −m

)
. (2.24)

We note that T (u; r;n) = T (r;u;n). We further note that the Wigner-3j

symbols [40] are real-valued. Therefore, T (u; r;n) = T (u; r;n), which can also be

directly proven using (2.23), symmetry relations of Wigner-3j symbols and the fact

that T (u; r;n) is non-zero only when s+ p+ ` is even.
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2.2 Rotations on the Sphere

Rotations on the sphere serve as counterparts of translations of the Euclidean

domain. We define the effect of rotations on the signal defined on the sphere as

an operator. We first define the rotation operator and later we note the effect of

rotation in spectral domain.

2.2.1 Rotation Operator

Rotations on the sphere are often parameterized using Euler angles (ϕ, ϑ, ω) ∈
SO(3), where ϕ ∈ [0, 2π), ϑ ∈ [0, π] and ω ∈ [0, 2π) [40]. Using the ‘zyz’ Euler

convention, we define the rotation operator Dρ = D(ϕ, ϑ, ω), which rotates a func-

tion on a sphere in the sequence of ω rotation around the z-axis, then ϑ rotation

about the y-axis followed by a ϕ rotation around the z-axis. If a function f(θ, φ)

is rotated on the sphere, then

(
Dρf

)
(x̂) =

(
D(ϕ, ϑ, ω)f

)
(x̂) , f(R−1x̂), (2.25)

where R is the 3 × 3 rotation matrix corresponding to the rotation operator

D(ϕ, ϑ, ω) and is given by [85]

R =




cosϕ cosϑ cosω − sinϕ sinω − cosϕ cosϑ sinω − sinϕ cosω cosϕ sinϑ

sinϕ cosϑ cosω − cosϕ sinω − sinϕ cosϑ sinω + cosϕ cosω sinϕ sinϑ

sinϑ cosω sinϑ sinω cosϑ


 .

(2.26)

The inverse of D(ϕ, ϑ, ω) denoted by D(ϕ, ϑ, ω)−1 is D(−ω,−ϑ,−ϕ).

2.2.2 Effect of Rotation in Spectral Domain

If a signal f(θ, φ) is rotated on the sphere under rotation operator D(ϕ, ϑ, ω), the

spherical harmonic coefficient, of degree ` and order m, of the rotated signal is a

linear combination of different order spherical harmonic coefficients of the original

signal of the same degree ` as [40]

(
D(ϕ, ϑ, ω)f

)m
`
,
〈
D(ϕ, ϑ, ω)f, Y m

`

〉
=
∑̀

m′=−`
Dm,m′

` (ϕ, ϑ, ω)(f)m
′

` , (2.27)
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where Dm,m′

` (ϕ, ϑ, ω) = Dm,m′

` (ρ) is the Wigner-D function defined in next subsec-

tion.

2.2.3 Wigner-D Function

The Wigner-D function is defined as

Dm,m′

` (ρ) = Dm,m′

` (ϕ, ϑ, ω) = e−imϕdm,m
′

` (ϑ)e−im
′ω, ρ = (ϕ, ϑ, ω) ∈ SO(3) (2.28)

where |m|, |m′| ≤ ` and dmm
′

` (ϑ) is the Wigner-d function [40] given by

dm,m
′

` (θ) =
∑

n

(−1)n−m
′+m×

√
(`+m′)!(`−m′)!(`+m)!(`−m)!

(`+m′ − n)!(n)!(`− n−m)!(n−m′ +m)!
×

cos
(θ

2

)2`−2n+m′−m
sin
(θ

2

)2n−m′+m

, (2.29)

We note the following relation between spherical harmonic function and Wigner-

D function

Dm,0
` (ϕ, ϑ, 0) =

√
4π

2`+ 1
Y m
` (ϑ, ϕ). (2.30)

2.2.4 Rotation of Azimuthally Symmetric Function

For the azimuthally symmetric functions h(x̂) ∈ H0, the ω rotation around z−axis

becomes ineffective and can be set to ω = 0. Hence, the expression in (2.27)

simplifies to

(
D(ϕ, ϑ, 0)h

)m
`

= Dm,0
` (ϕ, ϑ, 0)(h)0

` =

√
4π

2`+ 1
Y m
` (ϑ, ϕ)(h)0

` , (2.31)

where the second equality follows from the relation between spherical harmonic

and Wigner-D function given in (2.30).

2.3 Signals on the Rotation Group SO(3)

For ` ≥ 0 and m,m′ ∈ Z such that |m|, |m′| ≤ `, the Wigner-D functions in (2.28)

form a complete set of orthogonal functions for the space L2(SO(3)) of functions
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defined on the rotation group SO(3) and follow the orthogonality relation

∫

SO(3)

Dm,m′

` (ρ)Dq,q′
p (ρ) dρ =

8π2

2`+ 1
δ`pδmqδm′q′ , (2.32)

where dρ = dϕ sinϑdϑdω and the integral is a triple integral over all rotations

(ϕ, ϑ, ω) ∈ SO(3) [40]. Thus, any function f ∈ L2(SO(3)) may be expressed as

f(ρ) =
∞∑

`=0

∑̀

m=−`

`′∑

m=−`′

(
f
)m,m′

`
Dm,m′

` (ρ), (2.33)

where

(
f
)m,m′

`
=

2`+ 1

8π2

∫

SO(3)

f(ρ)Dm,m′

` (ρ) dρ. (2.34)

The signal f is said to be band-limited with maximum degree Lf if
(
f
)m,m′

`
=

0, ∀` > Lf .

2.4 Summary

In this chapter, we have introduced the required mathematical background. The

notation adopted in this chapter is used throughout this thesis. However, the new

notation or formulation, if required, will be defined in later chapters.





Chapter 3

Commutative Anisotropic

Convolution

In this chapter, we propose a new definition of convolution on the 2-sphere that

is analogous to the familiar Euclidean-domain convolution in many ways. The

proposed convolution is the first type of convolution on the 2-sphere which is com-

mutative. Two other advantages, in comparison with existing definitions in the lit-

erature, are that 1) the new convolution admits anisotropic filters and signals and

2) the domain of the output remains on the sphere. Therefore, the new convolution

well emulates the conventional Euclidean convolution. In addition to providing the

new definition of convolution and discussing its properties, we provide the spectral

analysis of the convolution output. We also develop a fast algorithm for efficient

computation of proposed convolution. This convolutional framework can be useful

in filtering applications for signals defined on the 2-sphere.

This chapter is organized as follows. We review the existing definitions in the

literature, which leads to our problem formulation in Section 3.1. In Section 3.2, we

establish a commutative anisotropic convolution and provide some graphical depic-

tion of the proposed approach. In Section 3.3, we present the spectral analysis of

the proposed convolution. Finally, in order to efficiently compute the commutative

anisotropic convolution, we develop a fast algorithm in Section 3.4.

25
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3.1 Existing Formulations of Convolution

The conventional convolution between two functions on 2-dimensional Euclidean

space, R2 is
(
f ? h

)
(x) ,

∫

R2

f(x− y)h(y) dy, (3.1)

where x, y ∈ R2. It is easy to verify that the convolution is commutative, f ? h =

h ? f .

On the premise that rotations on the sphere are counterparts of translations in

the Euclidean domain, the following definitions of convolution on S2 in the literature

involve all three independent rotations in the rotation group SO(3). The aim of the

next two subsections is to formally, albeit briefly, introduce these definitions and

point out the differences in their characterizations. We then pose a set of questions

in search for a counterpart of Euclidean convolution on the 2-sphere.

3.1.1 Type 1 (Anisotropic) Convolution

The following definition has appeared in [30,45]

g(ϕ, ϑ, ω) = h ? f ,
∫

S2

(
D(ϕ, ϑ, ω)h

)
(x̂) f(x̂) ds(x̂). (3.2)

By this definition, the domain of convolution output does not belong to S2. Instead,

as it is clear from above, g is a function of three independent Euler rotation angles

ϕ, ϑ, ω. Since a proper rotation on the 2-sphere is an isometry, we can apply the

inverse of rotation operator to both parts of the integrand in (3.2) and leave the

integral unchanged, as follows:

h ? f =

∫

S2

(
D(ϕ, ϑ, ω)−1D(ϕ, ϑ, ω)h

)
(x̂)

(
D(ϕ, ϑ, ω)−1f

)
(x̂) ds(x̂)

=

∫

S2
h(x̂)

(
D(ϕ, ϑ, ω)−1f

)
(x̂) ds(x̂) =

∫

S2
h(x̂)

(
D(−ω,−ϑ,−ϕ) f

)
(x̂) ds(x̂).

(3.3)

However, since D(ϕ, ϑ, ω) 6= D(−ω,−ϑ,−ϕ) in general, this convolution is not

commutative.
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3.1.2 Type 2 (Isotropic) Convolution

The following definition is adapted from [31]

(
h} f

)
(x̂) , 1

2π

∫ 2π

0

∫ π

0

∫ 2π

0

h(R−1x̂) f(Rη̂) dω sinϑ dϑ dϕ, (3.4)

where η̂ = (1, 0, 0)′ ∈ S2 is the north pole. Noting that in f(Rη̂), the first rotation

by ω of the north pole around the z−axis is ineffectual, we can rewrite the above

convolution as

(
h} f

)
(x̂) =

1

2π

∫ 2π

0

∫ π

0

∫ 2π

0

(
D(ϕ, ϑ, ω)h

)
(x̂) f(ϑ, ϕ) dω sinϑ dϑ dϕ. (3.5)

Compared to (3.2), (3.5) has a somewhat similar spirit with the difference that

an extra averaging over the first rotation ω is performed which turns the filter h into

an azimuthally symmetric kernel h0 , P0h, where P0 is the projection operator

which projects a signal belonging to L2(S2) into the subspace H0 ⊂ L2(S2). This

will bring the output of the convolution back to S2. However, as shown in [32] this

definition is identical to the isotropic convolution [46,47]

(h0 ~ f)(x̂) ,
∫

S2
h0(x̂ · ŷ) f(ŷ) ds(ŷ), x̂ ∈ S2, (3.6)

and the extra averaging over ω “kills” any directional azimuthal component of the

filter.

This convolution, when evaluated in the spherical harmonic domain is given by

〈
h} f, Y m

`

〉
=
〈
h0 ~ f, Y m

`

〉
=

√
4π

2`+ 1

(
h
)

0
`

(
f
)
m
` , (3.7)

which has a desirable multiplicative property between spherical harmonic coeffi-

cients of the filter and signal. However, as expected, only the zero-order spherical

harmonic coefficients of the filter are present, which makes this definition not com-

mutative in general, and information is discarded.

3.1.3 Problem Statement

From the discussion above, it becomes clear that existing definitions are either

anisotropic, but with an output whose domain is not in S2, or their output domain
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is S2, but can only accommodate isotropic filters. Neither of the convolutions are

commutative.

Motivated by the differences in the characterization of convolution on the sphere,

we define a convolution on S2, which simultaneously satisfies the following require-

ments: 1) the domain of its output is S2, 2) involves an integral over points on S2,

3) is anisotropic, and 4) is commutative.

3.2 Commutative Anisotropic Convolution on the

2-Sphere

The Euclidean convolution in (3.1) forms an implicit prescription for constructing a

suitable notion of convolution on S2. In particular, we are guided by the fact that in

R2, not all three isometries are involved in the convolution. Only two translations

and not the rotation are used. Hence, it is natural to think that only two degrees

of freedom in the rotations on S2 should be used to define the convolution, because

S2 is a 2-dimensional, albeit curved, surface. Therefore, we propose the following

formulation as the initial candidate for our convolution

gω(ϑ, ϕ) ,
∫

S2

(
D(ϕ, ϑ, ω)h

)
(x̂)f(x̂) ds(x̂). (3.8)

This candidate appears to be somewhat similar to the anisotropic convolution

in (3.2), but it differs in philosophy and actual content. For example, in (3.2), the

left hand side is a function of ϕ, ϑ, ω or the convolution results in a function whose

domain is not S2. Here, on the other hand, the output should be understood as

a function of ϑ and ϕ only. The initial rotation angle ω in (3.8) is unspecified at

this point. It might be a constant or a function of ϑ and ϕ. Our initial candidate

satisfies the first three requirements in Section 3.1.3. However, it is still lacking the

commutative property, which will be dealt with below.

3.2.1 Commutative Anisotropic Convolution

Our aim here is to constrain the rotation operator in (3.8) such that the definition of

convolution becomes commutative. We present the result in the following theorem.

Theorem 3.1 A necessary and sufficient condition for the anisotropic convolution

in (3.8) to be commutative is ω = π − ϕ.
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Proof

We first prove the necessary condition and show that for the convolution to be

commutative, ω has to be π − ϕ. Following similar reasoning as in (3.3), we can

write (3.8) as

gω(ϑ, ϕ) =

∫

S2

(
D(ϕ, ϑ, ω)h

)
(x̂) f(x̂) ds(x̂)

=

∫

S2
h(x̂)

(
D(−ω,−ϑ,−ϕ)f

)
(x̂) ds(x̂). (3.9)

Our objective is to select ω such that

D(ϕ, ϑ, ω) = D(−ω,−ϑ,−ϕ), (3.10)

so that the convolution becomes commutative. The negative rotation −ϑ around

the y−axis appears to be out of range of permissible co-latitude rotations ([0, π]),

which is resolved through the following identity [85]

D(ϕ, ϑ, ω) = D(π + ϕ,−ϑ, π + ω), (3.11)

where the z−axis rotations have (mod 2π) been omitted to avoid clutter. Now by

equating (3.10) and (3.11), we obtain two equations −ϕ = π+ ω and −ω = π+ϕ,

which give the value of ω

ω ≡ −π − ϕ ≡ π − ϕ (mod 2π), (3.12)

that makes the rotation operator D(ϕ, ϑ, ω) satisfy the “involution” property

D(ϕ, ϑ, π − ϕ) = D(ϕ, ϑ, π − ϕ)−1.

Due to this involution of the rotation operator for w = π − ϕ, the anisotropic

convolution in (3.9) becomes commutative. In fact, using a new operator � for

such a commutative convolution

(
h� f

)
(ϑ, ϕ) , gω(ϑ, ϕ)

∣∣
ω=π−ϕ = gπ−ϕ(ϑ, ϕ), (3.13)
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we conclude that

(
h� f

)
(ϑ, ϕ) =

∫

S2

(
D(ϕ, ϑ, π − ϕ)h

)
(x̂) f(x̂) ds(x̂)

=

∫

S2
h(x̂)

(
D(ϕ, ϑ, π − ϕ)−1 f

)
(x̂) ds(x̂)

=

∫

S2
h(x̂)

(
D(ϕ, ϑ, π − ϕ) f

)
(x̂) ds(x̂) =

(
f � h

)
(ϑ, ϕ).

The sufficient condition is proven by inserting ω = π−ϕ in D(ϕ, ϑ, ω) and verifying

using (3.11) that D(ϕ, ϑ, π − ϕ)−1 = D(−π + ϕ,−ϑ,−ϕ) = D(ϕ, ϑ, π − ϕ), which

results in a commutative convolution.

Remark 3.1 The proposed convolution can be interpreted as a mapping of anisotropic

convolution defined on SO(3) in (3.2) to S2 with the constraint that ω varies with

the longitude ϕ given by (3.12). Since, ω must be chosen as a function of ϕ, it

cannot be freely controlled at each spatial position.

In summary, we began with (3.8) with ω unspecified and have shown that it

must be chosen to be a function of ϕ (and not ϑ) according to (3.12) for the overall

rotation operation to be an involution, which yields the desired commutativity. We

now provide a geometric interpretation of this definition and later we present an

example to illustrate the proposed convolution.

3.2.2 Graphical Depiction

In Fig. 3.1 we present a sequence of images to depict the commutative convolution

in action. Fig. 3.1a depicts a simplified filter signal indicated by an asymmetric

region on the 2-sphere. The filter, of course, in general has support on the whole 2-

sphere. The first portion of the ω rotation (by π) is shown in Fig. 3.1b and may be

associated with flipping or “reversing” the filter (similar to Euclidean convolution).

Fig. 3.1c is the ω = π − ϕ rotation; Fig. 3.1d shows the ϑ rotation and, finally,

Fig. 3.1e shows the filter after the ϕ rotation. Fig. 3.2 shows an intrinsic rotation

along axis ŵ = ( cos(π + ϕ), sin(π + ϕ), 0 )′ by a single rotation ϑ, which effects

the same rotation of Fig. 3.1b to Fig. 3.1e.
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•

••

x y

z

(a) D(0, 0, 0) – initial position.

ω = π

•

••

x y

z

(b) D(0, 0, π) – π about z−axis.

ω = π − ϕ

•

••

x y

z

(c) D(0, 0, π − ϕ) – π − ϕ about
z−axis

ϑ

•

••

x y

z

(d)D(0, ϑ, π−ϕ) – ϑ about y−axis.

ϕ

•

••

x y

z

(e) D(ϕ, ϑ, π−ϕ) – ϕ about z−axis

Figure 3.1: Action of the commutative convolution kernel. A nominal asymmetrical
support region for the kernel is transformed under the action of operator D(ϕ, ϑ, π−
ϕ) according to its component rotations.
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•

••

x y

z

(a) f(x̂).

ϑ

•

••

x y

z

(b)
(
D(ϕ, ϑ,−ϕ)f

)
(x̂).

Figure 3.2: Single intrinsic rotation version of D(ϕ, ϑ,−ϕ).

(a) Mars signal. (b) Asymmetric filter function.

(c) Filtered signal.

Figure 3.3: Illustration of the commutative convolution. (a) Mars signal is con-
volved with (b) asymmetric spatially concentrated bandlimited filter kernel to ob-
tain (c) smoothed (low-pass filtered) Mars signal.
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3.2.3 Illustration of the Proposed Convolution

As an illustration of the proposed convolution, we consider the filtering of a signal

using a filter kernel, which is spatially concentrated in an asymmetric region around

north pole. We consider the Mars topographical map as a signal on the sphere which

is obtained by using a spherical harmonic model for the topography of Mars1 up

to a maximum spherical harmonic degree 150 and is shown in Fig. 3.3a. We use

a bandlimited filter kernel with the maximum spherical harmonic degree 80 and

spatial concentration in a strip region around north pole, bounded by co-latitude

θ = π
128

and the planes |y| = arcsin 9π
256

[86]. The filter kernel is obtained as a

solution of Slepian concentration problem on the sphere and is shown in Fig. 3.3b,

which is convolved with the signal (Mars topographic map) to obtain the filtered

signal shown in Fig. 3.3c. This filtering is equivalent to directional smoothing of

the Mars signal using asymmetric smoothing function where the direction of the

smoothing function at each spatial position (ϑ, ϕ) is π − ϕ.

3.2.4 Alternative Characterization of Anisotropic Convo-

lution

The expression in (3.8) represents the convolution in the spatial domain based

on the spatial-domain representations of filter and signal. Before concluding this

section, we give an alternative form expressed in terms of the spherical harmonic

coefficients of h(x̂), denoted by
(
h
)
t
s, and those of f(x̂), denoted by

(
f
)
q
p. Using

the spherical harmonic coefficient expansion of f and h in (2.12) and the effect of

rotation operator on spherical harmonic coefficients in (2.27), we can write (3.8) as

gω(ϑ, ϕ) =

∫

S2

∑

s,t

Y t
s (x̂)

s∑

t′=−s
Dt,t′

s (ϕ, ϑ, ω)
(
h
)
t′

s

∑

p,q

(
f
)
q
p Y

q
p (x̂) ds(x̂)

=
∑

s,t

∑

p,q

(−1)q
(
f
)−q
p δs,pδt,q

s∑

t′=−s
Dt,t′

s (ϕ, ϑ, ω)
(
h
)
t′

s , (3.14)

where δs,p is the Kronecker delta function and is equal to one only when s = p and

zero otherwise. We have also employed the conjugate symmetry property of spher-

ical harmonics and the orthonormal property of spherical harmonics. Simplifying

1http://www.ipgp.fr/∼wieczor/SH/
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the expression in (3.14) yields the sought result

gω(ϑ, ϕ) =
∑

s,t

(−1)t
(
f
)−t
s

s∑

t′=−s
Dt,t′

s (ϕ, ϑ, ω)
(
h
)
t′

s . (3.15)

We note that the expression in (3.15) is valid for any ω (a constant or a function of

ϑ and ϕ). The corresponding expression for commutative anisotropic convolution

can be obtained by setting ω = π − ϕ.

3.3 Spectral Analysis of Commutative Anisotropic

Convolution

We now analyze the result of commutative anisotropic convolution in the spherical

harmonic domain. That is, we want to evaluate
(
g
)
m
` = 〈gπ−ϕ, Y m

` 〉. We start with

the expression of gω in (3.15), which specifies the anisotropic convolution output

function in terms of Wigner-D functions and the spherical harmonic coefficients
(
f
)−t
s and

(
h
)
t
s. The spherical harmonic coefficient of the convolution output is

then

〈gπ−ϕ, Y m
` 〉 =

∑

s,t

(−1)t
(
f
)−t
s

s∑

t′=−s

(
h
)
t′

s 〈Dt,t′

s , Y m
` 〉2S, (3.16)

where the notation 〈Dt,t′
s , Y m

` 〉2S is used to emphasize that the inner product is taken

over 2 rotation angles characterizing S2 and not over all three rotation angles that

specify SO(3). Now, using the Wigner-D function expression in (2.28) and its

relation with spherical harmonics in (2.30), we can write 〈Dt,t′
s , Y m

` 〉 as

〈Dt,t′

s , Y m
` 〉 =

∫ π

0

∫ 2π

0

Dt,t′

s (ϕ, ϑ, π − ϕ)Y m
` (ϑ, ϕ) dϕ sinϑ dϑ

=

√
2`+ 1

4π

∫ π

0

dt,t
′

s (ϑ) dm,0` (ϑ)

∫ 2π

0

e−i(t−t
′+m)ϕ e−it

′π dϕ sinϑ dϑ, (3.17)

where, by orthogonality of exponentials over [0, 2π], the inner integral is non-zero

only when t− t′ + m = 0 or only when t′ = t + m. In this case, the expression in

(3.16) can be written as

〈gπ−ϕ, Y m
` 〉 = (−1)m2π

√
2`+ 1

4π

∞∑

s=0

K2∑

t=−K1

(
f
)−t
s

(
h
)
t+m
s

∫ π

0

dt,t+ms (ϑ)dm,0` (ϑ) sinϑdϑ,

(3.18)
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where K1 = max(−s,−s−m) and K2 = min(s, s−m), which ensure |m+ t| ≤ s.

The integral in (3.18) that involves the inner product of Wigner-d functions can

be solved using two approaches. The first approach is based on using the following

expansion of product of Wigner-d functions [87]

∫ π

0

dt,t+ms (ϑ) dm,0` (ϑ) sinϑ dϑ =
s+∑̀

j=|s−`|
C1(j, s, t, `,m)

∫ π

0

dt+m,t+mj (ϑ) sinϑ dϑ,

(3.19)

where C1(j, s, t, `,m) is given using Wigner-3j symbols as

C1(j, s, t, `,m) = 2j + 1

(
s ` j

t+m 0 −(t+m)

)(
s ` j

t m −(t+m)

)
. (3.20)

Using the expression of Wigner-d function in (2.29), the integral in (3.19) simplifies

to

∫
dt+m,t+mj (ϑ) sinϑ dϑ = 2

min(j+t+m,
j−t−m)∑

n=0

(−1)n

× (j + t+m− n+ 1)!(j − t−m− n+ 1)!(j − n)!

n!(j + 1)!
.

(3.21)

Another approach to solve the integral in (3.18) is to directly use Wigner-d function

in (2.29) to obtain

∫ π

0

dt,t+ms (ϑ) dm,0` (ϑ) sinϑ dϑ =
∑

n

∑

n′

(−1)(n+n′)

× C2(s, t,m, n)C3(`,m, n′)C4(s, `, n, n′), (3.22)

with

C2(s, t,m, n) ,
√

(s+ t+m)!(s− t−m)!(s+ t)!(s− t)!
(s+ t+m− n)!(n)!(s− n− t)!(n−m)!

,

C3(`,m, n′) ,
√

(`)!(`)!(`+m)!(`−m)!

(`− n′)!(n′)!(`− n′ −m)!(n′ +m)!
,

C4(s, `, n, n′) , 2
(s+ `− n− n′)!(n+ n′)!

(s+ `+ 1)!
,
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where the range of summations over n and n′ are given by max(0,m) ≤ n ≤
min(s − t, s − t + m) and max(0,−m) ≤ n′ ≤ min(`, ` − m) with the further

condition that n + n′ ≤ s + `. The expression in (3.22) allows us to explicitly

evaluate the integral involved in (3.18) without using Wigner-3j symbols.

3.3.1 Special Case – One Function is Azimuthally Symmet-

ric

Let h(x̂) be an azimuthally symmetric function, which implies
(
h
)
t
s = 〈h, Y t

s 〉 = 0

for t 6= 0. For this special case, we can write (3.15) with ω = π − ϕ as

(
h� f

)
(ϑ, ϕ) = gπ−ϕ(ϑ, ϕ) =

∑

s,t

(−1)tdt,0s (ϑ) e−itϕ
(
f
)−t
s

(
h
)

0
s, (3.23)

which can be expressed using relation (2.30) as

(
h� f

)
(ϑ, ϕ) =

∑

s,t

(−1)t
√

4π

2s+ 1
Y t
s (ϑ, ϕ)

(
f
)−t
s

(
h
)

0
s. (3.24)

Using conjugate symmetry and orthonormal property of spherical harmonics, we

obtain

〈h� f, Y m
` 〉 =

√
4π

2`+ 1

(
h
)

0
`

(
f
)
m
` , (3.25)

which is also equal to 〈f � h, Y m
` 〉. By commutativity, a simplified form of multi-

plication in the spherical harmonic domain results if either the signal (nominally

f) or filter (nominally h) is azimuthally symmetric.

In comparison, the convolution in [31] is not commutative and we observe

〈h} f, Y m
` 〉 =

√
4π

2`+ 1

(
h
)

0
`

(
f
)
m
` ,

〈f } h, Y m
` 〉 =

√
4π

2`+ 1

(
f
)

0
`

(
h
)

0
`δm,0,

where h(x̂) is an azimuthally symmetric function.
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3.4 Efficient Computation

In this section, we consider the problem of efficiently evaluating the commutative

anisotropic convolution in (3.13). Since the commutative anisotropic convolution is

a special case of SO(3) convolution, it can be computed efficiently by employing the

existing efficient algorithms [45] for SO(3) convolution to compute g(ϕ, ϑ, ω) in (3.8)

and then mapping g(ϕ, ϑ, ω) to the gπ−ϕ(ϑ, ϕ), whose domain is S2, with a constrain

ω = π−φ. However, this method of computation of gπ−ϕ(ϑ, ϕ) involves redundancy

as we do not need to compute the SO(3) convolution for all values of ω, instead, we

need to compute for only ω = π−ϕ. In order to avoid this redundancy, we present

fast algorithm for the efficient computation of commutative anisotropic convolution.

Following the spectral analysis of the commutative anisotropic convolution given in

Section 3.3, we note that the convolution output gπ−ϕ(ϑ, ϕ) is not a band-limited

function on the sphere, even when both signal f(θ, φ) and filter h(θ, φ) are band-

limited functions. Therefore, we further note that the convolution output cannot

be defined using fixed number of samples on the sphere.

For the computation of commutative anisotropic convolution given in (3.13),

we present here a range of algorithms, from the direct quadrature evaluation, to

the semi-fast algorithm that employs the existing efficient methods for SO(3) con-

volution, to the proposed fast algorithm where we use the factoring of rotation

approach [84] and employ FFT for efficient computation. We show that the pro-

posed fast algorithm is more computationally efficient than the direct quadrature

evaluation and semi-fast algorithm. In terms of computational complexity, our pro-

posed fast algorithm provides a saving of O(N) over existing efficient techniques,

when the convolution output is defined on O(N2) number of samples on the sphere.

Later, through numerical experiments, we verify the computational complexity of

the proposed fast algorithm.

3.4.1 Discretization of S2 and SO(3)

For representation of a signal on the sphere, it is required to define discretization

of both the spherical coordinates of the unit sphere and the Euler angle represen-

tation of SO(3). We consider the equiangular sampling tessellation schemes, which

support the computation of exact quadrature for band-limited signals.

For the unit sphere domain, we use the equiangular sampling scheme [41]
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S(L) = {θnθ = 2πnθ/(2L + 1), φnφ = 2πnφ/(2L + 1) : 0 ≤ nθ ≤ L, 0 ≤ nφ ≤ 2L}
as a grid of (L+ 1)× (2L+ 1) sample points on the sphere. Using the quadrature

weights derived in [41], the integral of a band-limited function f with band-limit Lf

over the sphere can be computed exactly as quadrature using the sampling scheme

S(Lf ). Since the commutative convolution output gπ−ϕ(ϑ, ϕ) is not a band-limited

function, therefore we cannot associate the size of the sampling grid for output with

the band-limit of the output. The larger the size of the grid, the better is the res-

olution of the convolution output. We use N to characterize the sampling grid

S(N) for the commutative anisotropic convolution output.

For the discretization of Euler angle representation of SO(3), we consider equian-

gular tessellation scheme C(L) = {ϕnϕ = 2πnϕ/(2L + 1), ϑnϑ = 2πnϑ/(2L +

1), ωnω = π(2nω + 1)/(2L + 1) : 0 ≤ nϑ ≤ L, 0 ≤ nϕ, nω ≤ 2L} as a grid of

(2L+ 1)× (L+ 1)× (2L+ 1) sample points.

3.4.2 Direct Quadrature Evaluation

Here, we discuss computation of the commutative convolution by evaluating the

integral in (3.8), with ω = π−ϕ, directly using a quadrature rule on the sphere. If

the output is required to be computed on the equiangular grid S(N) on the sphere,

the signals f and h are required to be sampled on the same grid. By virtue of the

sampling theorem for band-limited signals on the sphere [41], if N ≥ max(Lf , Lh),

the integral can be computed exactly as summation over the spatial domain samples

by employing the quadrature weights associated with the sampling scheme. Since

the integral is computed as a two dimensional summation over the grid S(N),

evaluated for each sample point on the two dimensional grid S(N) of the output,

the computational complexity to obtain the convolution output gπ−ϕ(ϑ, ϕ) on the

grid S(N) is O(N4).

3.4.3 Semi-Fast Algorithm - SO(3) Convolution Case

Here, we present the computation of commutative convolution using the fast al-

gorithm for SO(3) convolution described in [45] to obtain the convolution output

g(ϕ, ϑ, ω) given in (3.2) and defined on SO(3), followed by the mapping along
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ω = π − ϕ to obtain gπ−ϕ(ϑ, ϕ) as

gπ−ϕ(ϑ, ϕ) = g(ϕ, ϑ, ω)

∣∣∣∣
w=π−ϕ

. (3.26)

Following (3.14), we rewrite (3.15) as

g(ϕ, ϑ, ω) =
L∑

s=0

s∑

t=−s

s∑

t′=−s
(−1)t

(
f
)−t
s

(
h
)
t′

sD
t,t′

s (ϕ, ϑ, ω)

=
L∑

s=0

s∑

t=−s

s∑

t′=−s
(−1)t

(
f
)−t
s

(
h
)
t′

s

× e−itϕdt,t′s (ϑ)e−it
′ω, (3.27)

where L = min(Lf , Lh). The direct computation of (3.27) involves three sum-

mations for sample points defined on a three dimensional grid and therefore has

complexity O(L3N3). We note that the summations over t and t′ involve complex

exponentials and therefore can be computed efficiently by using FFT, reducing the

overall complexity to O(LN3 log2N), which is not better than the complexity of

the direct quadrature case if L log2N > N . However, it can be further lowered

by using the factoring of rotation approach, originally presented in [84] and then

applied for fast computation of SO(3) convolution [45].

By factoring the single rotation ϑ around y-axis as

D(0, ϑ, 0) = D(−π/2,−π/2, ϑ)D(0, π/2, π/2) (3.28)

and again incorporating the effect of rotation on spherical harmonic coefficients

given in (2.27) and the definition of Wigner-D function in (2.28), we can write the

Wigner-d function in (3.27) as

dt,t
′

s (ϑ) = it−t
′

s∑

t′′=−s
dt

′′,t
s (π/2) dt

′′,t′

s (π/2) e−it
′′ϑ, (3.29)

which is used to express the SO(3) convolution formulated in (3.27) as

g(ϕ, ϑ, ω) =
L∑

s=0

s∑

t=−s

s∑

t′=−s

s∑

t′′=−s
i3t−t

′(
f
)−t
s

(
h
)
t′

s

× dt′′,ts (π/2) dt
′′,t′

s (π/2) e−itϕ−it
′′ϑ−it′ω, (3.30)
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and rearrangement of the terms yields

g(ϕ,ϑ, ω) =
s∑

t=−s

s∑

t′=−s

s∑

t′′=−s
e−itϕ−it

′′ϑ−it′ω,

×
L∑

s=max(|t|,|t′|,|t′′|)
i3t−t

′(
f
)−t
s

(
h
)
t′

s d
t′′t
s (π/2) dt

′′t′

s (π/2)

︸ ︷︷ ︸
I(t,t′,t′′)

. (3.31)

We note that the convolution output in (3.31) is a 3-dimensional FFT of I(t, t′, t′′).

The rotation ϑ, which accounts for the computation of the Wigner-d function for

all ϑ, can be performed as a rotation around the z-axis by employing the factoring

of rotation given in (3.28), the effect of which can be expressed using complex

exponential and Wigner-d functions evaluated at π/2 only.

The evaluation of I(t, t′, t′′) involves the summation over s for three dimensions

t, t′, t′′ and therefore has complexity O(L4). Using I(t, t′, t′′), the SO(3) convolution

output g(ϕ, ϑ, ω) in (3.31) on the grid C(N) can be computed in O(N3 log2N). The

overall complexity to evaluate SO(3) convolution is therefore O(L4 + N3 log2N)

which is better than the complexity of the exact quadrature case.

As we mentioned earlier, once the SO(3) convolution output g(ϕ, ϑ, ω) is ob-

tained, it can be used to determine the commutative convolution output gπ−ϕ(ϑ, ϕ)

using (3.26). This method of using existing fast algorithms for SO(3) convolution

to evaluate the commutative convolution enables the efficient computation in the

harmonic space, however it involves redundancy in the computation as the current

efficient method evaluates the SO(3) convolution output for all ω ∈ [0, 2π). In-

stead, we only need the SO(3) convolution output for ω = π − ϕ. We remove this

redundancy in the computation and propose fast algorithm in the next subsection.

Remark 3.2 Although both ϕ and ω are defined for [0, 2π), we have deliberately

chosen different sampling criterion along ϕ and ω in the definition of our adopted

SO(3) sampling scheme C(N) (see Section 3.4.1). Specifically we have considered

2N+1 (an odd number) samples along both ϕ and ω, but the sampling points along ϕ

are symmetric around ϕ = 0 and the sampling points along ω are symmetric around

ω = π. This is in contrast to the conventional SO(3) sampling [24]. However, it is

necessary here as we are evaluating the commutative convolution gπ−ϕ(ϑ, ϕ) using

SO(3) convolution g(ϕ, ϑ, ω) with the constraint ω = π − φ, which can only be

applied if the proposed sampling C(N) for SO(3) is used.



3.4 Efficient Computation 41

3.4.4 Proposed Fast Algorithm

Here, we propose a fast algorithm for the evaluation of commutative convolution

on the sphere. Following the harmonic domain formulation of SO(3) convolution

in (3.30) and using the relation between the convolution output on SO(3) and the

commutative convolution output on S2, we can express gπ−ϕ(ϑ, ϕ) as

gπ−ϕ(ϑ, ϕ) =
L∑

t′′=−L
e−it

′′ϑJ(t′′, ϕ)K(t′′, ϕ), (3.32)

where

J(t′′, ϕ) =
s∑

t=−s

L∑

s=max(|t|,|t′′|)
(−i)t

(
f
)−t
s dt

′′t
s (π/2)e−itϕ (3.33)

and

K(t′′, ϕ) =
s∑

t′=−s

L∑

s=max(|t′|,|t′′|)
(i)t

′(
h
)
t′

s d
t′′t′

s (π/2)eit
′ϕ. (3.34)

We note that the constraint ω = π−φ, which yields the commutativity, also allows

the decoupling of Wigner-D functions in (3.32), so that the summations over t and

t′, given in (3.33) and (3.34) respectively, can be computed independently. Since

the computations of both J(t′′, ϕ) and K(t′′, ϕ) involve summation over complex

exponentials, we can employ FFTs to compute the summations efficiently. For

the convolution output on the grid S(N) with N ≥ max(Lf , Lh), both J(t′′, ϕ)

and K(t′′, ϕ) for each t′′ and for all 2N + 1 points along ϕ can be computed in

O(LN log2N) using FFT and the product of J(t′′, ϕ) and K(t′′, ϕ) can be computed

in O(N) computations for each t′′. Thus the overall complexity to obtain the

product of J(t′′, ϕ) and K(t′′, ϕ) for each s and for each t′′ is O(LN log2N) and

for all t′′ is O(LN2 log2N). Finally, the sum over t′′ can be computed efficiently in

O(N2 log2N) again using the FFT. Therefore, the overall complexity of proposed

fast algorithm is O(LN2 log2N), which is better than the complexities of both the

exact quadrature and semi-fast algorithms.
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Figure 3.4: The computation time τ in seconds for the semi-fast algorithm to
compute the convolution output gπ−ϕ(ϑ, ϕ) on grid S(N) for L = 32 and 64.
The computation time scales as N3 log2N as indicated by red solid line (without
markers).

3.4.5 Computation of Wigner-d Function

We note that both the semi-fast and fast algorithms require Wigner-d functions

evaluated for argument π/2. By reviewing (3.31), (3.33) and (3.34), we note that

we need to compute Wigner-d function dt
′′,t
s (π/2) on the entire (t′′, t) plane. During

implementation, the Wigner-d function dt
′′,t
s (π/2) can be computed on the plane

(t′′, t) for a given s by using the recursion method proposed in [88] with complexity

O(L2), which does not alter the overall complexity of the algorithms (either semi-

fast or fast).

3.4.6 Computation Time Comparison

In this section, we demonstrate and compare the computation time of the semi-fast

and fast algorithms to evaluate the commutative anisotropic convolution. We have

implemented our algorithms using MATLAB, adopting the equiangular tessellations,

defined in Section 3.4.1. We have recorded the computation time τ (in seconds) to

evaluate convolution output gπ−ϕ(ϑ, ϕ) on the grid S(N) for L = 32 and L = 64

and for different values of N . We generate the band-limited test signal on the

sphere by using uniformly distributed spherical harmonic coefficients with real and

imaginary parts in the range of [−1, 1]. The numerical experiments are conducted

on a 2.4 GHz Intel Xeon processor with 64 GB of RAM and the computation times

are averaged over twenty test signals.
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Figure 3.5: The computation time τ in seconds for proposed fast algorithm to
compute the convolution output gπ−ϕ(ϑ, ϕ) on grid S(N) for L = 32 and 64.
The computation time scales as N2 log2 N as indicated by red solid line(without
markers).

The computation time τ taken by semi-fast algorithm to compute convolution

output gπ−ϕ(ϑ, ϕ) is shown in Fig. 3.4 on log-log axes for different values of N ,

where the computation time grows as N3 log2N . For the proposed fast algorithm,

the computation time τ scales as N2 log2N as shown in Fig. 3.5. For comparison,

we have also plotted the computation time for both semi-fast and fast algorithm

on a linear scale along time axis as shown in Fig. 3.6. We note that the simulation

results agree with the theoretically evaluated computational complexities of the

algorithms and thus corroborate the mathematical developments.

3.5 Summary of Contributions

In this chapter, we have established a new type of convolution between two signals

on the 2-sphere. Since, the proposed convolution admits anisotropic signals and

filters and it is commutative with the output defined on the sphere, the proposed

convolution serves as a close analog of the conventional Euclidean convolution. Af-

ter presenting the new definition of convolution and discussing its properties, we

have provided the spectral analysis of the convolution output. We have also devel-

oped fast algorithm to efficiently compute the proposed commutative convolution.

The contributions made in this chapter are as follows.

Addressing Q1 posed in Section 1.2.1:
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Figure 3.6: Comparison of the computation time τ (in seconds) for the semi-fast
and fast algorithms to compute the convolution output gπ−ϕ(ϑ, ϕ) on grid S(N)
for L = 32 and 64.

• We have proposed the new definition of convolution on the sphere which well

emulates its counterpart in Euclidean domain. The proposed convolution

generates an output defined on S2 and is formulated as a double integral

over S2. Furthermore, it is anisotropic and commutative in general, i.e., the

directional features of both filter and signal contribute towards the output of

convolution, and changing the roles of filter and signal does not change the

outcome of convolution. We have also provided the geometrical interpretation

and illustration of the proposed commutative convolution.

• We have provided the geometrical interpretation and illustration of the pro-

posed commutative convolution. Moreover, the proposed convolution is also

analyzed in spectral domain.

• We have proposed the fast algorithm which employs the factoring of rota-

tion approach followed by the separation of variables technique. For the

evaluation of the commutative convolution output on O(N2) samples on the

2-sphere, the proposed fast algorithm provides a saving of O(N) in terms of

the computational complexity over the semi-fast algorithm. Finally, simula-

tion results have been presented to verify the theoretical improvement in the

computational complexity.



Chapter 4

Spatially Localized Spherical

Harmonic Transform for

Spatio-spectral Analysis

In time-frequency analysis, the short-time Fourier transform (STFT) has been

widely explored, investigated and used in many applications to analyze the lo-

calized spectral contents of the signal [64,65,72,80,89]. In this chapter, we develop

a tool analogous to the STFT for signals defined on the unit sphere. The objec-

tive is to devise a distribution that represents how the signal spectrum varies in

the spatial domain. We propose a transform, which we call the spatially localized

spherical harmonic transform (SLSHT), as an analog of STFT to represent the sig-

nal jointly in spatial and spectral domains. For this purpose, we focus on the use

of azimuthally symmetric window functions to achieve localization in the spatial

domain and express the transform in terms of the rotation applied to the original

window. We also give a succinct matrix representation of all possible SLSHT com-

ponents, which we refer to as the SLSHT distribution. We also present a distribu-

tion transform operation inspired by the characteristic function in time-frequency

analysis [64, 65], which transforms SLSHT distribution into a new spatio-spectral

distribution which we call the complementary distribution.

We discuss the inherent trade-off between the spatial and spectral resolution

of different window functions from the perspective of the uncertainty principle.

This will help us in determining suitable choices for window functions for SLSHT.

We propose and demonstrate the use of an eigenfunction window, obtained from

45
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the Slepian concentration problem on the sphere [20], as a good choice for the

window function in the SLSHT. As an illustration, we apply the SLSHT distribution

with eigenfunction window to the example of the Mars topographic map and show

that the localized contributions of spherical harmonics are apparent in the spatio-

spectral domain.

The chapter is organized as follows. We summarize STFT in time-frequency

analysis and its properties briefly in Section 4.1. The proposed spatially local-

ized spherical harmonic transform, its matrix formulation and signal inversion are

presented in Section 4.2. The complementary distribution and its properties are

defined in Section 4.3. The window localization trade-off is discussed in Section 4.4

and an example to illustrate the usefulness of the proposed transform are presented

in Section 4.5.

4.1 Time-Frequency Signal Analysis using Short

Time Fourier Transform

A time domain signal can be equivalently represented in the frequency domain.

While there is an equivalence between the signal representations in these two do-

mains, the signal in one domain does not explicitly convey information about the

localized contents in the other domain. Time-frequency signal processing deals

with the analysis and processing of signals in a joint time-frequency domain.

4.1.1 Short-Time Fourier Transform (STFT)

The short-time Fourier transform (STFT) is a powerful tool which is widely used

in time-frequency analysis to investigate time localized spectral characteristics of a

signal [64,65]. In order to study the time domain signal f in the vicinity of time t

in frequency domain, a window function is used and Fourier analysis is performed.

The STFT is given by

F (t, ω) =

∫
f(τ)h(t− τ) e−iωτ dτ, (4.1)

where a time-shift of the window function, h, provides the localization in time.

Hence, the time-frequency distribution using the STFT is the collection of Fourier

transforms of the windowed signal about all points of translation t. For brevity,
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the notation for the STFT, F (t, ω) in (4.1), suppresses the dependence on h.

The effectiveness of the STFT in (4.1) for various applications is sensitive to the

selection of window function h [64, 68, 89]. The basic problem in window selection

is the trade-off between a greater window width for better frequency resolution

and a lesser window width for capturing the localized temporal properties of the

signal [89].

4.1.2 Signal Inversion from STFT Distribution

The STFT representation of the signal in (4.1) belongs to the class of linear repre-

sentations which satisfy simple reconstruction properties [64, 65]. The signal f(t)

can be recovered from its STFT representation F (t, ω), up to a constant factor,

through the weighted marginal

∫
F (t, ω) eiωt dω = C1 f(t) (4.2)

and the Fourier transform F (ω) of the signal f(t) can be obtained from F (t, ω) as

frequency marginal which is obtained by integrating out the time variable as

∫
F (t, ω) dt = C2 F (ω), (4.3)

where C1 and C2 are constants which depend upon the window function.

4.1.3 Characteristic Function for STFT Distribution

The characteristic function has been widely used to study the localized character-

istics of time-frequency distributions [64, 65]. The characteristic function M(ς, τ)

for the STFT representation F (t, ω) is defined as [65]

M(ς, τ) =

∫∫ ∣∣F (t, ω)
∣∣2 eiςt eiτω dt dω. (4.4)

We can see that the characteristic function M(ς, τ) is a transformed distribution

which is equivalent to the two dimensional inverse Fourier transform of the squared

magnitude of the STFT distribution F (t, ω) in (4.1). We make it clear here that

the we are interested in the STFT based time-frequency representation of a signal,

whereas the term “time-frequency distributions” in this thesis is used to represent
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large class of time-frequency representations of a signal [64,65].

4.2 Spatially Localized Spherical Harmonic Trans-

form

4.2.1 Definition of SLSHT

We define the SLSHT in analogy to the STFT in time-frequency analysis. Judicious

choices of rotations on the sphere serve as counterparts of translations in (4.1) in the

time domain. We re-locate, through rotation, an azimuthally-symmetric window

function (centered at the north pole) to achieve localization in the spatial domain.

We first define the SLSHT and use it to define the SLSHT distribution as spatio-

spectral representation of the signal.

Definition 4.1 (Spatially Localized Spherical Harmonic Transform) For a

signal f ∈ L2(S2), define the directional SLSHT g(ŷ; `,m) ∈ L2(S2) of degree ` and

order m as the spherical harmonic transform of a localized signal where localiza-

tion is provided by the rotation operator D(ϕ, ϑ, 0) acting on azimuthally symmetric

window function h ∈ L2(S2), i.e.,

g(ŷ; `,m) = g(ŷ;n) ,
∫

S2

(
D(ϕ, ϑ, 0)h

)
(x̂)f(x̂)Y m

` (x̂) ds(x̂),

ŷ = ŷ(ϑ, ϕ), (`,m)↔ n. (4.5)

The SLSHT is dependent on the chosen window h, but for brevity, this de-

pendence is not explicit in the notation. We emphasize that, unlike the spherical

harmonic coefficient of the signal f ,
(
f
)
m
` , which is only a function of degree ` and

order m, the SLSHT provides a spatially-varying spherical harmonic representation

of the signal (i.e., g(ŷ; `,m) is a function of the spatial localization ŷ and degree

and order). We call g(ŷ; `,m) the SLSHT of degree ` and order m.

4.2.2 SLSHT Harmonic Expansion

Here, we express the relation between the SLSHT g(ŷ; `,m) and the spherical

harmonic coefficients of the signal f . First we determine the spherical harmonic

coefficients corresponding to the rotated window. We are interested in the case
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where both the signal f(x̂) and the window kernel h(x̂) are band-limited. Let

us assume that f(x̂) ∈ HLf and h(x̂) ∈ HLh (since the kernel is assumed to be

azimuthally symmetric, h(x̂) ∈ H0
Lh
⊂ H0 would be a more precise notation).

Specializing (2.31) for the SLSHT window kernel h at point x̂ = x̂(θ, ϕ), we

define

(
h
)
r(ŷ) ,

〈
D(ϕ, ϑ, 0)h, Yr

〉
=

√
4π

2p+ 1
Y q
p (ŷ)

(
h
)

0
p, ŷ = ŷ(ϑ, ϕ), (p, q)↔ r.

(4.6)

Using (4.6), (2.12), (2.13) and the mapping (s, t) ↔ u, we can alternatively write

g(ŷ;n) in (4.5) as

g(ŷ;n) =

Nf∑

u=0

(
f
)
u

Nh∑

r=0

(
h
)
r(ŷ)T (u; r;n), (4.7)

where Nh = L2
h + 2Lh and

T (u; r;n) = T (r;u;n) ,
∫

S2
Yr(x̂)Yu(x̂)Yn(x̂) ds(x̂) (4.8)

denotes the spherical harmonic triple product, the explicit expression of which is

provided in (2.24).

Remark 4.1 It is implicit in the formulation of SLSHT that the signal of interest

is band-limited to Lf < ∞. As a signal has finite energy, its spherical harmonic

Fourier coefficients are square summable. Consequently, any signal can be arbitrar-

ily closely approximated by a band-limited signal by making Lf sufficiently large.

The study of the involved approximation errors on the SLSHT is outside the scope

of this thesis.

Remark 4.2 It is important to note here that each SLSHT component of the

form g(ŷ;n) is a band-limited function on the sphere with band-limit Lh, that is,
〈
g(ŷ;n), Y s

r

〉
= 0 for all r > Lh.

4.2.3 SLSHT Distribution and Matrix Formulation

Definition 4.2 (SLSHT Distribution) The SLSHT distribution g(x̂) of a sig-

nal f ∈ L2(S2) is an indexed vector of all SLSHT components of the form g(ŷ;n)
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as defined in (4.5) for n = 0, 1, · · · , Ng, i.e.,

g(ŷ) ,
(
g(ŷ; 0), g(ŷ; 1), g(ŷ; 2), · · · , g(ŷ;Ng)

)′
, (4.9)

where Ng = L2
g + 2Lg and Lg = Lf + Lh.

Remark 4.3 The SLSHT distribution is a generalization of the transform in [4]

and provides the representation of a signal in the joint spatio-spectral domain.

Using the preceding formulation, the SLSHT distribution g(ŷ) in (4.9) can be

written in matrix form as

g(ŷ) = Ψ(ŷ)f , (4.10)

where f =
(
Ff
)
(x̂) and Ψ is the transformation operator matrix of size (Ng+1)×

(Nf+1), which transforms the given signal in spectral domain to the spatio-spectral

domain and is given by

Ψ(ŷ) =




ψ0,0(ŷ) ψ0,1(ŷ) · · · ψ0,Nf (ŷ)

ψ1,0(ŷ) ψ1,1(ŷ) · · · ψ1,Nf (ŷ)
...

...
...

ψNg ,0(ŷ) ψNg ,1(ŷ) · · · ψNg ,Nf (ŷ)




(4.11)

with entries

ψn,u(ŷ) =

Nh∑

r=0

(
h
)
r(ŷ)T (u; r;n). (4.12)

Remark 4.4 The matrix form in (4.10) transforms the spectral response of the

signal f to the joint spatio-spectral domain. The size of the transformation matrix

is dependent on the spectral bandwidth of the input signal f and the window function

h. The value of matrix elements is dependent on the applied rotation ŷ and the

window function h, whose choice will be discussed in Section 4.4.

4.2.4 Inversion of Signal from its SLSHT distribution

Recovery of the spectral components of the signal from its localized transform was

first shown in [4]. For the sake of completeness, based on our matrix formulation,

and explicit expression of the transform in terms of rotated window function, we

provide an alternative formulation. We present the result in the following theorem.
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Theorem 4.1 (Inversion of Signal from SLSHT Distribution) If g(ŷ) rep-

resents the SLSHT distribution of the signal f using an azimuthally symmetric

window function h, where the distribution is of the form (4.9), then the spectral

domain response f of f can be recovered from g(ŷ) up to a multiplicative factor as

the spherical harmonics marginal f̂ , which is obtained by integrating the SLSHT

distribution over the spatial domain as

f̂ =

∫

S2
g(ŷ) ds(ŷ) =

√
4π
(
h
)

0
0 ×

( (
f
)

0,
(
f
)

1, · · · ,
(
f
)
Nf
, 0, · · · , 0

)′
, (4.13)

where f̂ denotes the spherical harmonics marginal and is a vector of length Ng + 1

where only the first Nf + 1 elements are non-zero.

Proof

Integrating (4.10) over the spatial domain gives

∫

S2
g(ŷ) ds(ŷ) =

( ∫

S2
Ψ(ŷ) ds(ŷ)

)
f . (4.14)

The integral of kernel matrix Ψ is obtained by integrating each matrix element

ψn,u(ŷ) in (4.12), that is,

ψn,u(ŷ) ds(ŷ) =

Nh∑

r=0

T (u; r;n)

∫

S2

(
h
)
r(ŷ) ds(ŷ) (4.15)

Now, using the definition of
(
h
)
r(ŷ) in (4.6) with mapping (p, q)↔ r, we obtain

(
h
)
r(ŷ) =

√
4π

2p+ 1

(
h
)

0
p

∫

S2
Y q
p (ŷ)ds(ŷ)

=
4π√

2p+ 1

(
h
)

0
pδp,0δq,0

= 4π
(
h
)

0
0δr,0. (4.16)

Using (4.16), all the summation terms in (4.15) become zero except for r = 0.

From the orthonormal property of spherical harmonics, T (0; r;n) = δr,n/
√

4π. In-

corporating these results in (4.15), we get

∫

S2
ψn,u(ŷ) ds(ŷ) =

√
4π
(
h
)

0
0 δn,u. (4.17)

Substituting (4.17) in integrating the elements of Ψ(x̂) in (4.14), we obtain (4.13).



52 Spatially Localized Spherical Harmonic Transform for Spatio-spectral Analysis

Remark 4.5 From Theorem 4.1, we can see that we only need to know the DC-

component of the window function in order to recover the signal exactly from its

SLSHT distribution.

4.3 Complementary Distribution

In this section, we present the distribution transform operation that metamor-

phoses the proposed SLSHT distribution in (4.9) into a new type of distribution

which we call its complementary distribution. We present a method to transform

the SLSHT distribution into the complementary distribution using the definition

inspired by the characteristic function in (4.4) in time-frequency analysis. As our

proposed SLSHT distribution in (4.9) is not quadratic in nature, we use the pro-

posed SLSHT distribution itself instead of its squared magnitude. We will show

that the complementary distribution exhibits some desired properties as it reveals

information about both the signal and window function. Here, we present the

mathematical definition of complementary distribution and formulate a relation

to express the complementary distribution in terms of the signal and the window

function. We also develop a matrix formulation for the complementary distribution.

4.3.1 Complementary Distribution Transformation

In analogy with (4.4), the sought distribution transform transforms the spatial

domain component to a corresponding spectral domain component and the spectral

domain component to a spatial domain component.

Definition 4.3 (Spatio-spectral Complementary Distribution) We define the

spatio-spectral complementary distribution κ(x̂) as:

κ(x̂) =
(
κ(0, x̂), κ(1, x̂), κ(2, x̂), · · · , κ(Nh, x̂)

)′
, (4.18)

where each element κ(c, x̂) of the complementary distribution is related to the com-

ponents of SLSHT distribution g(x̂) in (4.9) by

κ(c, x̂) ,
Ng∑

n=0

Yn(x̂)

∫

S2
g(ŷ, n)Yc(ŷ) ds(ŷ). (4.19)
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Remark 4.6 By comparing (4.19) with (2.12), we note that κ(c, x̂) is a band-

limited function on the sphere with band-limit Lg = Lf + Lh.

Using the expansion of g(ŷ, n) in (4.7) and matrix formulation in (4.10), the

complementary distribution can be expressed in matrix form as

κ(x̂) = Υ(x̂)f , (4.20)

where Υ(x̂) is a matrix of size (Nh + 1)× (Nf + 1) that transforms the signal into

its complementary distribution and the entries of the matrix Υ(x̂) are given by

Υu,c(x̂) = (−1)b
√

4π

2a+ 1

(
h
)

0
a

Ng∑

n=0

Yn(x̂)T (s, t; a,−b; `,m) (4.21)

with mappings (r, s) ↔ u, (a, b) ↔ c and (`,m) ↔ n. The matrix formulation in

(4.20) transforms the signal directly into its complementary distribution and Υ(x̂)

acts as the transformation matrix for this distribution transform operation.

4.3.2 Spherical Harmonics Marginal of Complementary Dis-

tribution

We present the spherical harmonics marginal of complementary distribution in the

form of the following Theorem.

Theorem 4.2 (Spherical Harmonics Marginal of Complementary Distribution)

If κ represents the complementary distribution of the signal f as defined in (4.18)

using azimuthally symmetric window function h, then the spherical harmonics

marginal of κ is obtained by integrating the distribution over the spatial domain

and is given by

∫

S2
κ(x̂) ds(x̂) =

(
[hf ]0, [hf ]1, · · · , [hf ]Nh)′, (4.22)

where

[hf ]c =
1√

4π(2a+ 1)

(
h
)

0
a

(
f
)
b
a (4.23)

with (a, b)↔ c.
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Proof

We obtain the spherical harmonics marginal of the distribution κ by integrating

(4.20) over the spatial domain

∫

S2
κ(x̂) dx̂ =

( ∫

S2
Υ(x̂) ds(x̂)

)
f . (4.24)

The integral of kernel matrix Υ(x̂) is obtained by integrating each matrix element.

Using the definition of Υu,c(x̂) in (4.21), we can write

∫

S2
Υu,c(x̂) ds(x̂) = (−1)b

√
4π

2a+ 1

(
h
)

0
a

Ng∑

n=0

T (s, t; a,−b; `,m)

∫

S2
Yn(x̂)ds(x̂).

(4.25)

As a consequence of the integration over the whole sphere, all the summation

terms in (4.25) become zero except for n = 0, which implies ` = 0 and m = 0. In

addition, using the orthonormal property of spherical harmonics and the definition

of the spherical harmonics triple product in (4.8), we have

T (s, t; a,−b; 0, 0) =
(−1)bδs,aδt,b√

4π
, (4.26)

with (a, b)↔ c and (r, s)↔ t. Incorporating these results in (4.25), we get

∫

S2
Υu,c(x̂) ds(x̂) =

(
h
)

0
a√

4π(2a+ 1)
δs,aδt,b. (4.27)

Upon substituting (4.27) for matrix elements of Υ in (4.24), we obtain the re-

sult (4.22) stated in Theorem 4.2.

Remark 4.7 The result in Theorem 4.2 states that the spherical harmonics marginal

of complementary distribution gives the element-wise product of spherical harmonic

coefficients of the signal f and window function h with a scaling factor that de-

pends upon the degree of the spherical harmonic coefficients. Using this property of

complementary distribution (4.22), we can recover the window function completely

from its distribution assuming we obtain the signal first from its SLSHT distribu-

tion g(x̂). In conclusion, all we need is the DC-component of the window function
(
h
)

0
0 to recover both the signal and window function from its proposed SLSHT dis-

tribution or complementary distribution. Note that the window function cannot be
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directly recovered from the SLSHT distribution.

4.4 Optimal Spatio-spectral Concentration of Win-

dow Function

The SLSHT distribution does not depend solely on the signal because the distribu-

tion entangles the signal and the window. The effectiveness of SLSHT distribution

to reveal the information about the localized spectral contents of a signal in the

spatio-spectral domain depends on the chosen window function. If we require higher

resolution in one domain, the window should be narrower in that domain. From the

uncertainty principle on the unit sphere, a signal cannot be locally concentrated

in both the spatial and spectral domains [78]. If a window is chosen to obtain the

desired resolution in one domain, it is said to be an optimal window if it is also

optimally localized in the other domain [65].

We study the window functions jointly in both spatial and spectral domains

using the definition of uncertainty principle on the unit sphere. The following

inequality, referred as the uncertainty principle, holds for unit energy azimuthally

symmetric functions defined on the unit sphere [78,90]

σS√
1− σ2

S

· σL ≥ 1, (4.28)

where σS and σL denote the variance of the window function in the spatial domain

and spectral domain respectively and are defined as [1, 78]

σ2
S = 1−

(
π

∫ π

0

sin(2θ)
∣∣h(θ)

∣∣2 dθ
)2

, σ2
L =

∞∑

`=0

`(`+ 1)|
(
h
)

0
` |2. (4.29)

Note that a unit energy window function is assumed in (4.29), which ensures that

0 ≤ σS ≤ 1.

In this work, we consider and compare the following unit energy normalized

azimuthally symmetric window functions: rectangular window, triangular window,

cosine window, Hamming window, Hanning window, the window of Simons et

al. [4], Gaussian window and the eigenfunction window, all of which are parame-

terized by θc denoting the window truncation width. The first five windows are

defined in [91]. The window in [4] is obtained by truncating the rectangular win-
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Figure 4.1: (a) Variance σS in spatial domain, (b) variance σL in spectral domain
and (c) uncertainty product in (4.28) for different types of azimuthally symmetric
window functions.

dow in the spectral domain within the main spectral lobe. The Gaussian window

is a unit energy normalized function that decays exponentially with the square of
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the colatitude and its variance is chosen such that 99% of the energy lies within

the truncation width. The eigenfunction window h(x̂) arises as a solution of a

Slepian concentration problem on the sphere [27]. To maximize the spatial con-

centration of a band-limited signal h(x̂) with maximum spherical harmonic degree

Lh, equivalently represented by the column vector h0 containing the entries
(
h
)

0
`

for 0 ≤ ` ≤ Lh, within a polar cap region R characterized by truncation width θc,

one needs to maximize the spatial concentration ratio [1, 27]

λ =

∫
R
|h(x̂)|2 dx̂∫

S2|h(x̂)|2 dx̂ . (4.30)

The solution that maximizes (4.30) gives rise to the standard eigenvalue problem

Dh0 = λh0, which can be solved numerically. As we are considering an azimuthally

symmetric region R, h0 = [
(
h
)

0
0,
(
h
)

0
1, . . . ,

(
h
)

0
Lh

] denotes the spectral response of

h(ŷ) and D is the (Lh + 1)× (Lh + 1) real and symmetric matrix where the entries

are given by D``′ =
∫
R
Y 0
` (x̂)Y 0

`′ (x̂) dx̂. We use the band-limited eigenfunction

as window function, the one corresponding to the largest eigenvalue and having

minimum possible bandwidth Lh is related to truncation width θc as Lh = (2π/θc)−
1 [27].

Fig. 4.1 plots the (a) variance σS in spatial domain, (b) variance σL in spectral

domain and (c) uncertainty product in (4.28) for different types of azimuthally

symmetric window functions and different values of truncation width π/32 ≤ θc ≤
π/4. Fig. 4.1(a) and Fig. 4.1(b) show that generally the variance in spatial domain

increases with truncation width and the variance in spectral domain decreases with

the truncation width. The rectangular window has the poorest localization because

the discontinuity at truncation points increases its variance in the spectral domain.

As expected, the window in [4] performs very well in the spectral domain, but

poorly in the spatial domain. The figure also shows that the Gaussian window

and the eigenfunction window exhibit better localization behavior. Comparatively,

these two windows have the lowest variances in both domains. Note that the smaller

value for variance indicates better localization. Fig. 4.1(c) confirms that both the

eigenfunction window and the Gaussian window nearly attain the lower bound of

1 for the uncertainty product of (4.28). The rectangular window has the largest

uncertainty product as expected. The product for other windows, including the

window in [4], lie between these two extremes.
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Figure 4.2: Gaussian window and eigenfunction window for truncation width,
θc = π/6 in (a) spatial domain, h(x̂) = h(θ) and (b) spectral domain,

(
h
)

0
` . The

eigenfunction window has less spectral bandwidth relative to the Gaussian window.

The optimal truncation width depends on the required resolution in both the

spatial and spectral domains. As indicated in the variance plot in Fig. 4.1, the

spatial variance σS of the eigenfunction window is very close to that of the Gaussian

window. But the spectral variance σL of the eigenfunction window is lower than

that of the Gaussian window, especially at lower truncation widths. The Gaussian

window and eigenfunction window are plotted for truncation width θc = π/6 in

both spatial and spectral domains in Fig. 4.2. Both windows are normalized to

unit energy and chosen such that 99% of energy lies within the truncation width.

It is observed that the eigenfunction window has smaller bandwidth and its energy

is more uniformly distributed relative to Gaussian window in the spatial domain.

Thus, the eigenfunction window can be a good choice for window function in the

SLSHT distribution.

It must be noted that compared to space-scale techniques, the spectral-space

resolution of the SLSHT is fixed for all spectral components and spatial positions.

Incorporating multi-resolution capability in SLSHT is possible, but would require

using different bandwidth window functions for different SLSHT distribution com-

ponents, consideration of which is beyond the scope of this correspondence. Finally,

we remark that with appropriate modifications it is possible to incorporate non-

azimuthally symmetric windows into our formulation.
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Figure 4.3: Mars topographic map f(x̂), obtained using band-limited spectral
model of Mars with maximum spectral degree 128.

4.5 Simulation Results

In this section, we demonstrate the spatially localized spherical harmonics trans-

form and our proposed window to study the signals in joint spatio-spectral domain.

We consider a Mars topographic map (height above geoid) as a signal on the sphere

that has higher degree harmonic components in a localized mountainous spatial re-

gion. We study the high resolution Mars topographic map (size = 512×512) using

SLSHT and illustrate that the SLSHT distribution reveals localized spectral con-

tributions of spherical harmonics in the spatial domain. In the simulation results,

we have implemented the method outlined in [31] to calculate the spherical har-

monic components and triple product in MATLAB. We use equiangular sampling with

N ×N samples on the sphere as θn = πn/N , φn = 2πn/N for n = 0, 1, . . . , N − 1.

Note that exact quadrature can be performed using this tessellation with errors on

the order of numerical precision. We use the azimuthally symmetric band-limited

Slepian eigenfunction window to obtain localization in spatial domain. For SLSHT

distribution computation using a window with bandwidth Lh, we use a very high

resolution N = 256 � 2Lh to obtain smooth plots. Finally, for inverse spherical

harmonic transform of a function with maximum spherical harmonics degree Lf ,

we use minimum resolution N = 2Lf [31] for exact quadrature.
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Figure 4.4: (a) Energy per spherical harmonic degree E` ((4.31)) and (b) Energy
ratio per degree E ′` in (4.32) for components of the SLSHT distribution g in (4.9)
of the Mars topographic map for degree 0 ≤ ` ≤ 40.

Fig. 4.3 shows the Mars topographic map f(x̂) in the spatial domain. The

Mars topographic map f(x̂) is obtained in the spatial domain using its spherical

harmonics topographic model up to degree of 128. There are volcanoes leading to

high frequency content in the signal which are localized in the vicinity of θ = π/2

and φ = −π/3. We use the unit energy normalized Mars signal with DC-component

eliminated. If
(
f
)
m
` denotes the spherical harmonic coefficients for the Mars signal

f(x̂), we define the energy per degree E` as

E` =
∑̀

m=−`
|
(
f
)
m
` |2. (4.31)

Fig. 4.4(a) shows the energy per degree E` in the spectrum of Mars, which

indicates that 90% of the energy is contributed by the spherical harmonics with

degree less than 10. The higher degree spherical harmonics contribute towards

high frequency regions in a signal and contain very little energy. The higher degree



4.6 Concentration Uncertainty Principle 61

spherical harmonic coefficients do not clearly provide information about the region

of their contributions in the signal f(x̂). We determine all SLSHT components of

the form g(x̂, c) for 1 ≤ c ≤ 960 or g(x̂, `,m) for 1 ≤ ` ≤ 30 and all orders |m| ≤ `

using an eigenfunction window with truncation width θc = π/8. We calculate

the energy contribution by spherical harmonics in a region around volcanoes. We

expect that higher spherical harmonics would have significant energy concentrated

around the volcanoes. We define the energy ratio per degree E ′` as a measure of

energy contribution by all order spherical harmonics for a particular degree in the

localized region as

E ′` =
∑̀

m=−`

∫
R
|g(x̂, `,m)|2 dx̂∫

S2|g(x̂, `,m)|2 dx̂ , (4.32)

where R denotes the spherical cap region of width π/8 centered at θ = π/2 and

φ = −π/3. The region R only covers 3.81% area of the whole sphere and cap-

tures the magnitude of the SLSHT distribution component around the volcanoes.

Fig. 4.4(b) shows the energy ratio per degree E ′`, which indicates that the higher

degree spherical harmonics, despite their low energy content in overall spectrum,

have their energy localized in a region R.

Fig. 4.5 shows the magnitude of zero order distribution components of the form

g(x̂, `, 0) for 11 ≤ ` ≤ 30, which indicate the spatial contribution of zero order

spherical harmonics. These distribution components indicate that the contribution

of higher order spherical harmonics is mainly around the region where volcanoes

are located. Note that it is also possible to resolve topographic features such as

volcanoes using wavelets, as demonstrated in [5]. However, the SLSHT distribution

provides interpretation about the spectral contributions of a particular spherical

harmonic in a localized region in the spatial domain, which is not explicitly available

using wavelets.

4.6 Concentration Uncertainty Principle

In the previous section, we analyzed different window functions from the perspec-

tive of the classic uncertainty principle that relates the variances of the signal in

the spatial and spectral domains [1, 78, 90]. A more general notion of uncertainty,

herein referred to as a concentration uncertainty principle, was provided by Donoho
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Figure 4.5: Magnitude of components of SLSHT distribution g in (4.9) of Mars
topographic map f(x̂). The distribution components g(x̂, `,m) are shown for m =
0 and 11 ≤ ` ≤ 30 in a sorted manner; that the degree ` increments from left
to right, with the lowest degree ` = 11 is plotted on the top left and the highest
degree ` = 30 on the lower right.

and Stark. It holds that a function and its Fourier transform cannot be simulta-

neously concentrated on any set of small measure [92]. The authors in [92] defined

two criteria for measuring concentrations as the integral of an absolute value of

the signal (L1-norm) and as the signal energy (L2-norm). We note that concen-

tration uncertainty principles have also been extensively applied in problems of
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signal reconstruction and recovery [92], signal extrapolation [93] and compressive

sampling [94].

In this section, we formulate concentration uncertainty principles for signals

on the sphere where the concentration is measured using the L1-norm and L2-

norm of a signal respectively. More precisely, if the signal f(x̂) on the sphere

is concentrated on some spatial region R ⊂ S2 and also concentrated on some

spectral region N = [N1, N2] which denotes the spherical harmonic coefficients
(
f
)
m
` with N1 ≤ ` ≤ N2 and −` ≤ m ≤ `, we develop the principles which relate

the concentration measures and concentration regions in both spatial and spectral

domains. Note that the region R does not need to be connected, whereas for the

sake of simplicity, we consider the connected interval N in spectral domain but

this can also be generalized for non-connected intervals. Here connected interval

means that N = [N1, N2] contains all degrees between N1 and N2. We first define

the selection operators in both spatial and spectral domains which select the part

of a signal in a selected spatial or spectral region [95]. Then we state and prove the

uncertainty principles. We first define Lp norm of a signal defined on the sphere and

the Lp norm of an operator on L2(S2). Later, we formulate selection operators in

the spatial and spectral domain and then we provide the concentration uncertainty

principles.

4.6.1 Lp norm of Signal and Operator

For a signal f ∈ L2(S2), its Lp-norm is defined as [96]

‖f‖p =
( ∫

S2
|f(x̂)|p ds(x̂)

)1/p
. (4.33)

Define an operator K for signals on the sphere using general Fredholm integral

equation [85]

(Kf)(x̂) =

∫

S2
K(x̂, ŷ) f(ŷ)ds(ŷ), (4.34)

where K(x̂, ŷ) is the kernel for an operator K. Since it is important in the sequel,

we define the Lp-norm of an operator K as

‖K‖p = sup
f∈S2

‖Kf‖p
‖f‖p

. (4.35)



64 Spatially Localized Spherical Harmonic Transform for Spatio-spectral Analysis

Also, the Hilbert-Schmidt norm of an operator K with kernel K(x̂, ŷ) is given

by [92]

‖K‖H =

(∫

S2

∫

S2
|K(x̂, ŷ)|2ds(x̂) ds(ŷ)

)1/2

, (4.36)

which is a bound on ‖K‖2. We note that the kernel K(x̂, ŷ) will always be taken

as Hilbert-Schmidt, meaning ‖K‖H < ∞, which is a sufficient condition to make

the integral operator compact.

4.6.2 Selection Operators on the Sphere

Definition 4.4 (Spatial Selection Operator) Define the spatial selection op-

erator KR which selects the function in a region R with kernel KR(x̂, ŷ) as

KR(x̂, ŷ) , IR(x̂)δ(x̂, ŷ), (4.37)

where IR(x̂) = 1 for x̂ ∈ R ⊂ S2 and IR(x̂) = 0 for x̂ ∈ S2\R is an indicator

function of the region R and δ(x̂, ŷ) denotes the Dirac delta function on the sphere

given in (2.21) .

Definition 4.5 (Spectral Selection Operator) Define the spectral selection op-

erator KN with N = [N1, N2], which selects the contribution of spherical harmonics

in spectral region N in a signal and has the kernel KN as

KN(x̂, ŷ) ,
N2∑

`=N1

∑̀

m=−`
Y m
` (x̂)Y m

` (ŷ). (4.38)

We note that both the spatial and spectral selection operators are idempotent and

self-adjoint. That is, they are projection operators.

4.6.3 The L1-norm Uncertainty Principle

We first present the L1-norm uncertainty principle which relates the concentration

of signal in spatial and spectral domains to the measure of spatial and spectral

regions, where the concentration is determined using the L1-norm of a signal. We

say that f is εR concentrated in the spatial domain and εN concentrated in the

spectral domain if ‖f −KRf‖1 ≤ εR and ‖f −KNf‖1 ≤ εN respectively.
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Theorem 4.3 (L1-norm Uncertainty Principle) If the unit L1-norm signal f

is εR concentrated in the region R ⊂ S2 and εN concentrated in the spectral region

N = [N1, N2], then

A

4π

(
(N2 + 1)2 −N2

1

)
≥ 1− εR − εN

1 + εN
, (4.39)

where A =
∫
S2IR(x̂)ds(x̂) denotes the area of the region R.

Proof

Since, the signal f is unit-norm, we have

‖f‖1 =

∫

S2
|f(x̂)|ds(x̂) = 1 (4.40)

and using the given ‖f − KRf‖1 ≤ εR and ‖f − KNf‖1 ≤ εN and the fact that

‖f −KRf‖1 ≥ ‖f‖1 − ‖KRf‖1, we obtain

‖KRf‖1 + εR ≥ 1 , ‖KNf‖+ εN ≥ 1. (4.41)

Define a composite operator KRN = KRKN . From (4.40) and (4.41), we obtain the

L1-norm of this composite operator as

‖KRN‖1 ≥ ‖KRNf‖1 ≥ 1− εR − εN . (4.42)

Since, the operator KN is idempotent, using the spherical harmonic expansion of

f , we can write

(KNf)(x̂) =

N2∑

`=N1

∑̀

m=−`

∫

S2
Y m
` (x̂)Y m

` (ŷ)(KNf)(ŷ) ds(ŷ). (4.43)

Using the spherical harmonics addition theorem in (2.9), we can obtain from (4.43)

that

|(KNf)(x̂)| =
N2∑

`=N1

2`+ 1

4π

∫

S2
|P 0
` (x̂ · ŷ)|ds(ŷ) (4.44)

and we have sup ‖P 0
` (x̂ · ŷ)‖1 = 1 and ‖(KNf)‖∞ = max |(KNf)(x̂)| for x̂ ∈ S2,
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which implies

‖(KNf)‖∞ ≤
1

4π

(
(N2 + 1)2 −N2

1

)
‖(KNf)‖1. (4.45)

For the composite operator KRN , we have

‖KRNf‖1 =

∫

R

|(KNf)(x̂)|ds(x̂) ≤ ‖KNf‖∞A, (4.46)

where A is the area of the region R. Using (4.46) and (4.45), we obtain

‖KRNf‖1 ≤
A

4π

(
(N2 + 1)2 −N2

1

)
‖(KNf)‖1. (4.47)

Combining (4.40), (4.41) and (4.42) with (4.47) gives the stated result.

Remark 4.8 The factor A
4π

(
(N2 + 1)2 −N2

1

)
on the left hand side of (4.39) can

be defined as a generalized space-bandwidth product, with the term A/4π being

a measure of the spatial region R and the term (N2 + 1)2 − N2
1 being a measure

of the spectral region N = [N1, N2]. For N1 = 0, this space-bandwidth product is

referred to as an equivalent of the Shannon number in [27] for signals defined on

the sphere.

4.6.4 The L2-norm Uncertainty Principle

Next, we present the uncertainty principle for the case in which the concentration

is measured using L2-norm, which is a measure of energy of the signal and makes

this principle more appealing and practical.

Theorem 4.4 (L2-norm Uncertainty Principle) If the unit L2-norm signal f

is εR concentrated in the region R ⊂ S2 such that ‖f − KRf‖2 ≤ εR and εN

concentrated in the spectral region N = [N1, N2] such that ‖f −KNf‖2 ≤ εN , then

A

4π

(
(N2 + 1)2 −N2

1

)
≥ (1− εR − εN)2, (4.48)

where A =
∫
S2IR(x̂)dx̂ denotes the area of the region R.

Proof

By definition, ‖f‖2 = 1, ‖f −KRf‖2 ≤ εR and ‖f −KNf‖2 ≤ εN , which implies

‖KRf‖2 ≥ 1− εR , ‖KNf‖2 ≥ 1− εN . (4.49)
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Define a composite operator KNR = KNKR composed of spatial selection operation

R followed by spectral selection KN . By substituting (4.37) and (4.38) in (4.34) and

using the representation of Dirac delta in (2.21), we obtain the kernel KNR(x̂, ŷ)

as

KNR(x̂, ŷ) =

N2∑

`=N1

∑̀

m=−`
Y m
` (x̂)Y m

` (ŷ)IR(ŷ). (4.50)

The Hilbert-Schmidt norm of the composite operator KNR can be obtained using

(4.36) along with the spherical harmonics addition theorem in (2.9) and the fact

that P 0
` (1) = 1 as

‖KNR‖H =

(
N2∑

`=N1

2`+ 1

4π

∫

R

ds(x̂)

)1/2

=

(
A

4π

(
(N2 + 1)2 −N2

1

)
)1/2

. (4.51)

Now, the effect of the composite operator on the concentration can be readily

obtained from (4.49) as

‖KNR f‖2 ≥ 1− εR − εN . (4.52)

Using definition of the norm of operator in (4.35), ‖KNR‖2 ≥ ‖KNR f‖2 and the

fact that ‖KNR‖H ≥ ‖KNR‖2 and combined with (4.51) and (4.52) gives the result

in (4.48).

Remark 4.9 We can infer from the proof of Theorem 4.4 that the composite

operator KRN = KRKN is an adjoint of the operator KNR which implies that

the Hilbert-Schmidt norm of these two composite operators is equal and given by

(4.51).

4.6.5 Sharpness of the Uncertainty Principle Bound

We provide an analysis of the bound imposed by the L2-norm uncertainty principle

on simultaneous spatial and spectral signal concentration. We compare this bound

with the largest eigenvalue obtained from the Slepian concentration problem for

azimuthally symmetric signals on the sphere proposed in [1, 27, 39]. First, we
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Figure 4.6: Comparison of the uncertainty bound λ0 = (N2 + 1)2(1− cos Θ)/2 ob-
tained from (4.48) and the largest eigenvalue λc associated with the most concen-
trated band-limited eigenfunction obtained from Slepian’s concentration problem
on the sphere [1]. Results are shown as a function of the area A of the spatial
polar cap regions with consideration of spectral regions N = [0, N2] for N2 = 10
and N2 = 20.

consider the spatial polar cap regions R characterized by central angle Θ with area

A =
∫ π
o

∫ Θ

0
sin θdθdφ = 2π(1 − cos Θ) and the spectral regions N = [0, N2]. We

use λc(Θ, N2) to denote the largest eigenvalue obtained numerically by solving the

concentration problem on the sphere [1], which finds the band-limited signal of

maximum spectral degree N2 with maximum energy concentration in the polar cap

region of angle Θ. We obtain a simplified form of the product on the left hand

side in (4.48) for spatial and spectral regions under consideration as λ0(Θ, N2) =

(N2 + 1)2(1 − cos Θ)/2, which serves as an uncertainty bound. Fig 4.6 shows the

comparison of λc(Θ, N2) and λ0(Θ, N2) against Θ for N2 = 10 and N2 = 20, which

suggests that λ0 serves as a sharp bound for the spatial polar cap region R and it

gets tighter for smaller values of λ0.

In the preceding analysis, we considered the connected polar cap region of cen-

tral angle Θ. Next, we consider a non-connected region of two polar caps centered

at opposite poles (θ = 0 and θ = π) with the central angle of each polar cap being

cos−1(1 + cos Θ)/2. It can be easily shown that the region of two polar caps have

the same area A = 2π(1 − cos Θ), thus the same uncertainty bound holds. But

the tightness of the bound is comparatively reduced as illustrated by the ‘non-

connected region’ curve in Fig 4.6. For an example considered here, we note that
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the bound or the limit imposed by concentration uncertainty principle is more

sharper and tighter for connected regions and smaller values of space-bandwidth

product respectively.

4.7 Summary of Contributions

In this chapter, we have proposed a transform which we have called the spatially

localized spherical harmonics transform (SLSHT) for signals defined on the unit

sphere. The proposed technique transforms signals on the sphere into joint spatio-

spectral SLSHT distribution that represents how the signal spectrum is changing in

the spatial domain. We also presented the complementary distribution, analogous

to characteristic function in the time-frequency analysis. We formulated the matrix

representation of the proposed transforms and proved that the signal and window

can be recovered from the SLSHT distribution. We used an azimuthally symmetric

window to achieve spatial localization and analyzed the localization trade-off for

a window function in both spatial and spectral domains from the perspective of

the uncertainty principle. In this work, we have also investigated concentration

uncertainty principles for the signals on the sphere that relate the localization of

concentration of a signal in spatial and spectral domains. The contributions made

in this chapter are as follows.

Addressing Q2 posed in Section 1.2.1:

• We have employed a localized spherical harmonic transform, herein referred

as SLSHT, to represent the signal in spatio-spectral domain. In spirit, the

proposed transform is analogous to STFT in time-frequency analysis.

• We have provided the matrix representation of the transform, resulting in

spatio-spectral representation which we call SLSHT distribution. To sup-

port our formulation of spatio-spectral distribution, we have presented the

inversion relation to obtain signal from its SLSHT distribution.

• Later, we have illustrated with the help of an example that the SLSHT dis-

tribution of a signal reveals the spatially localized contributions of spherical

harmonics, which are not clearly visible in the global spectrum of the signal.

Addressing Q3 posed in Section 1.2.1:



70 Spatially Localized Spherical Harmonic Transform for Spatio-spectral Analysis

• From the perspective of uncertainty principle, we have studied the local-

ization trade-off for different window functions in both spatial and spectral

domains and proposed to use the eigenfunction window, obtained from the

Slpeian concentration problem on the sphere [1, 39], for spatial localization

in obtaining the SLSHT distribution of a signal.

Addressing Q4 posed in Section 1.2.1:

• We have derived new uncertainty principles for the signals on the sphere

that relate the localization of concentration of a signal in spatial and spectral

domains. Considering the concentration as an integral of the absolute value of

a signal over the sphere, the L1-norm uncertainty principle has been derived.

We also derived the more practical L2-norm uncertainty principle using the

Hilbert-Schmidt norm of the composite selection operator on the sphere.



Chapter 5

Spatially Varying Spectral

Filtering

5.1 Introduction

In this chapter, we extend the signal transformation based on the concept of STFT

in the time-frequency domain to the joint spatio-spectral domain on the sphere.

Joint spatio-spectral filtering is of significant importance when we wish to filter

and modify spatially-varying spectral contents of signals. For this purpose, the

spherical harmonic transform is not adequate because it cannot directly reveal “

spatially localized” contributions of spectral contents of a signal in the spectral

domain.

We use the SLSHT distribution presented in Chapter 4 as the representation

of the signal in joint spatio-spectral domain. The concept of SLSHT has been

used for localized spectral analysis [1] and spectral estimation [20] on the sphere.

However, the application of SLSHT for signal filtering has not been considered

before. In this context, we consider filtering and modification of signals in the

joint spatio-spectral domain. As illustrated in Fig. 5.1, the SLSHT distribution

of the input signal is first obtained, then the SLSHT distribution is processed

in the joint spatio-spectral domain to yield the modified distribution, which is

ultimately transformed back to the spatial domain using a suitably devised inverse

operation. Since the SLSHT distribution is modified in the spatio-spectral domain,

there is a possibility that there exists no physical signal which corresponds to

the modified distribution—an analogous problem is well known in time-frequency

71
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f(x̂) SLSHT transformation
inverse spatio-spectral

transform
d(x̂)

︸ ︷︷ ︸
spatial

︸ ︷︷ ︸
spatio-spectral

︸ ︷︷ ︸
spatial

SLSHD
modified
SLSHD

Figure 5.1: General schematic for signal transformation via the spatio-spectral
domain. The spatial signal, f(x̂), on the unit sphere, is first mapped to the
spatio-spectral domain using the spatially localized spherical harmonic transform
(SLSHT). Then its SLSHT distribution (denoted by SLSHD in the figure) is trans-
formed in spatio-spectral domain. Finally the result is mapped back to the spatial
domain using an inverse spatio-spectral transform.

analysis [73, 74, 79–81]. Therefore, there is a need to find the signal that best

approximates the modified distribution.

The rest of this Chapter is organized as follows. In Section 5.2, we present

a general integral operator that transforms the SLSHT distribution of a signal

to a modified spatio-spectral distribution. For the case when the modified spatio-

spectral distribution is not a valid SLSHT distribution, we devise a suitable inverse

spatio-spectral transform in Section 5.2.2, which finds a signal whose distribution

best approximates the modified distribution in the least squares sense. Then, we

formulate this spatio-spectral modification as a linear transformation of the signal

in the spectral domain. Later, we investigate two types of filtering operations in

spatio-spectral domain. First in Section 5.3.1, we consider filtering as multiplica-

tion of the filter function defined in spatio-spectral domain and the given SLSHT

distribution. Later in Section 5.3.2, we perform filtering as a convolution of the

filter function and the SLSHT distribution of a signal. Finally, some specific nu-

merical examples are given in Section 5.4.

5.2 Signal Transformation in Spatio-spectral Do-

main

In Chapter 4, we saw that the SLSHT distribution represents the spatially-varying

spectral representation of a signal as a function of both spatial location ŷ and

degree and order `,m. As a result, it offers the opportunity to transform, modify

and filter the signal in the joint spatio-spectral domain, which can be very useful

for the processing of signals that contain spatially-varying spectral contents. Here,

we use a general integral operator approach to transform the SLSHT distribution.
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Later in Sections 5.3 and 5.4, we specify two types of transformations and analyze

their properties and usefulness.

For this purpose, we use a set of Ng + 1 kernels defined on the domain S2 ×
S2 and denoted by ζ(x̂, ŷ;n). Each kernel operates on its corresponding SLSHT

component g(ŷ;n) as follows

v(x̂;n) =

∫

S2
ζ(x̂, ŷ;n) g(ŷ;n) ds(ŷ), 0 ≤ n ≤ Ng (5.1)

to generate a modified component v(x̂;n) in the spatio-spectral domain. For a

given x̂ and ŷ and by arranging all the kernels in vector form as

ζ(x̂, ŷ) ,
(
ζ(x̂, ŷ; 0), ζ(x̂, ŷ; 1), ζ(x̂, ŷ; 2), · · · , ζ(x̂, ŷ;Ng)

)′
,

we can write the overall operation on the SLSHT distribution in the concise form

v(x̂) =
(
Kg
)
(x̂) ,

∫

S2
ζ(x̂, ŷ)� g(ŷ) ds(ŷ), (5.2)

where � denotes component-wise operation of the kernel elements in ζ(x̂, ŷ) on

corresponding SLSHT components in g(ŷ). Note that the kernels ζ(x̂, ŷ;n) for

Nv < n ≤ Ng can be zero and hence, in general the “effective” length of the

modified distribution v(x̂) satisfies Nv + 1 ≤ Ng + 1. Nevertheless for consistency

with the transformation operator matrix Ψ, we will deal with a full-length modified

distribution v(x̂) of length Ng+1, even though some of its last components may be

zero. We also note that while v(x̂) is a form of modified spatio-spectral distribution,

it is not necessarily a valid SLSHT distribution. This will be further elaborated

shortly.

Using the formulation of SLSHT distribution in (4.10), we can relate the mod-

ified distribution (5.2) to the vector spectral representation of the signal, f , and

the SLSHT distribution transformation operator matrix Ψ(ŷ) as

v(x̂) =
(
KΨ

)
(x̂)f =

(∫

S2
diag

(
ζ(x̂, ŷ)

)
Ψ(ŷ) ds(ŷ)

)
f , (5.3)

where diag
(
ζ(x̂, ŷ)

)
returns the diagonal matrix with diagonal entries specified by

the vector ζ(x̂, ŷ).

Remark 5.1 In the formulation of the spatio-spectral transformation of signal in
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(5.2), we note that g(ŷ) can be any representation of signals in spatio-spectral

domain. However, here, we are specifically considering SLSHT distribution as the

signal representation in spatio-spectral domain.

5.2.1 Exact Inverse Spatio-Spectral Transform

We note that not every spatio-spectral distribution, v(x̂), is a valid SLSHT dis-

tribution. In other words, it is possible that there exists no signal belonging to

L2(S2) for which v(x̂) is its corresponding SLSHT distribution. An obvious exam-

ple would be a spatio-spectral distribution truncated both in spatial and spectral

domains. From the uncertainty principle, one can expect that there exists no signal

which corresponds to this type of modified distribution.

But first, let us assume that the modified distribution vector v(x̂) is indeed a

valid SLSHT distribution. Then there exists a signal d(x̂) ∈ L2(S2) with spectral

response d corresponding to v(x̂), which can be recovered through the “inversion

formula” presented in Theorem 4.1

(
d
)
u =

1

K

∫

S2
v(ŷ;u) ds(ŷ), (5.4)

where K =
√

4π
(
h
)

0
0. Applying this back into (4.7) results in the following admis-

sibility condition

v(x̂;n) =
1

K

Nf∑

u=0

(
d
)
u

Nh∑

r=0

(
h
)
r(x̂)T (u; r;n)

=
1

K

Nf∑

u=0

Nh∑

r=0

(
h
)
r(x̂)T (u; r;n)

∫

S2
v(ŷ;u) ds(ŷ). (5.5)

The admissibility condition in (5.5) is expressed on the modified distribution v(x̂;n).

By using the definition of SLSHT distribution in (4.10), the formulation of modified

distribution v(x̂) in (5.3) and the inversion relation in Theorem 4.1, we can also

express the admissibility condition on the set of kernels ζ(x̂, ŷ) as

K

∫

S2
diag

(
ζ(x̂, ŷ)

)
Ψ(ŷ) ds(ŷ) = Ψ(x̂)

(∫

S2

∫

S2
diag

(
ζ(x̂, ŷ)

)
Ψ(ŷ) ds(x̂)ds(ŷ)

)
.

(5.6)

If the modified distribution satisfies the condition in (5.5) or the set of kernels
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ζ(x̂, ŷ) are chosen to satisfy the condition in (5.6), we can find a signal d(x̂) =

F−1d, such that v(x̂) = Ψ(x̂)d. We remind ourselves that according to the discus-

sion following (5.2), the effective length of d, Nd+1, can be smaller than Nf+1. For

example, if we choose each kernel ζ(x̂, ŷ;n) as a band-limited Dirac-delta function

given by

ζ(x̂, ŷ;n) = Kn

Nζn∑

u=0

Yu(x̂)Yu(ŷ), (5.7)

where Nh ≤ Nζn < ∞ and Kn denotes any complex number, the set of kernels

ζ(x̂, ŷ) satisfies the condition in (5.6) and the modified distribution distribution

v(x̂) is a valid SLSHT distribution of the signal d such that
(
d
)
u = Ku

(
f
)
u. The

choice of kernel in (5.7) is the simplest case and we note that any set of kernels

which satisfies the admissibility condition results in a valid SLSHT distribution

v(x̂).

5.2.2 Least Squares Solution

For the case that the modified distribution v(x̂) is not a valid SLSHT distribution,

we seek to solve an optimization problem to find a signal d(x̂) ∈ L2(S2) having

the spectral response d =
(
F d
)
(x̂) and the SLSHT distribution Ψ(x̂)d, which

approximates v(x̂) in the least squares sense. For this purpose, we define the error

term

e(x̂;n) , v(x̂;n)−Ψn,:(x̂)d,

where Ψn,:(x̂) is the n-th row of Ψ(x̂). The total error is then

E =
∥∥v −Ψd

∥∥2 ,
∫

S2

Ng∑

n=0

∣∣e(x̂;n)
∣∣2 ds(x̂), (5.8)

where the norm is, in fact, the norm of vectors in the spatio-spectral domain.

Setting the gradient of E with respect to d to zero will result in the least squares

approximate solution and we summarize this in the following theorem, which is

also shown in Fig. 5.2.

Theorem 5.1 (Least Squares Solution) Let the SLSHT distribution g(ŷ) =

Ψ(ŷ)f , as defined in (4.9)-(4.12), be modified into v(x̂) according to (5.1)-(5.2).

The signal d(x̂) ∈ L2(S2) that best describes v(x̂) in the least squares sense has its
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︸ ︷︷ ︸
Υ

f(x̂) F f Ψ(x̂) K
1

E

∫

S2
ΨH(x̂)( · ) ds(x̂) d F−1 d(x̂)

ζ(x̂, ŷ)

g(x̂) v(x̂)

Figure 5.2: The spatio-spectral processing: f =
(
Ff
)
(x̂) is the spectral response

of the signal f(x̂) on the unit sphere, g(x̂) is corresponding SLSHT distribution
in the spatio-spectral domain, v(x̂) is the modified SLSHT distribution under the
operator K with kernel ζ(x̂, ŷ) in the spatio-spectral domain, and d is the spectral
response of the output signal d(x̂) on the unit sphere. The transformation between
the spectral responses is linear and given by the spatio-spectral transformation
matrix Υ.

spectral response defined through

d , arg min
d̃

∥∥v −Ψd̃
∥∥2
, (5.9)

and is found to be

d =
1

E

∫

S2
ΨH(x̂)v(x̂) ds(x̂), (5.10)

where (·)H denotes Hermitian transpose and E is defined as the energy of the window

kernel h given by

E ,
〈
h, h
〉

=

Lh∑

p=0

∣∣(h
)

0
p

∣∣2. (5.11)

Proof

See Appendix A.1.

Corollary 5.1 If the modified distribution is a valid SLSHT distribution, by plug-

ging v(x̂) = Ψ(x̂)d into (5.10) and following the mathematical details provided

Appendix A.1, it is easy to verify that the result stated in Theorem 5.1 (see (5.10))

becomes the exact solution.

5.2.3 Spatio-spectral Transformation as Linear Transfor-

mation

From Fig. 5.2, it becomes clear that we can express the overall process of transform-

ing the band-limited signal with spectral response f , with the maximum spectral
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degree Lf , to another band-limited signal d according to the following linear trans-

formation

d = Υf , (5.12)

where Υ is a matrix of size (Nf + 1) × (Nf + 1) and is referred to as the spatio-

spectral transformation matrix as shown in Fig. 5.2. This transformation matrix

is useful because in a single step it encapsulates 1) transformation of f into the

spatio-spectral domain to obtain g(x̂), 2) processing in the spatio-spectral domain

which yields v(x̂), and 3) transformation from the spatio-spectral domain back to

spectral domain to obtain d. Therefore, knowing Υ is enough for spatio-spectral

transformation of f . Using the result in Theorem 5.1, the formulation of the

modified distribution in (5.3) and the SLSHT distribution expression in (4.10), we

can express Υ as

Υ =
1

E

∫

S2

∫

S2
ΨH(x̂)

(
diag

(
ζ(x̂, ŷ)

)
Ψ(ŷ)

)
ds(ŷ) ds(x̂), (5.13)

which depends on the kernel vector ζ(x̂, ŷ) and the SLSHT distribution operator

matrix Ψ(x̂). Since Ψ(x̂) depends on the chosen window function used for spatial

localization, the kernel and the window function completely characterize the spatio-

spectral transformation and processing of signals in the proposed framework.

5.3 Filtering in Spatio-Spectral Domain

In the previous section, we provided a general framework for modification of the

SLSHT distribution using integral operators and discussed how the modified dis-

tribution can be transformed back to a valid signal on the sphere. We aim to study

specific, but useful types of signal filtering in joint spatio-spectral domain. The

filtering can be either taken as multiplication or convolution of the filter function

and the SLSHT distribution in the spatio-spectral domain, which will be discussed

in the following two subsections. But first, we define the filter function in the

spatio-spectral domain that modifies the given SLSHT distribution of a signal.

Definition 5.1 (Filter Function in Spatio-spectral Domain) Define z(x̂) to

be the filter function in the spatio-spectral domain as

z(x̂) ,
(
z(x̂; 0), z(x̂; 1), z(x̂; 2), · · · , z(x̂;Ng)

)′
, (5.14)
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f Ψ(x̂) � 1

E

∫

S2
ΨH(x̂)( · ) ds(x̂) d

z(x̂)

g(x̂) v(x̂)

(a)

f Ψ(x̂) ~ 1

E

∫

S2
ΨH(x̂)( · ) ds(x̂) d

z(x̂)

g(x̂) v(x̂)

(b)

Figure 5.3: The block diagram that represents the concept of filtering in spatio-
spectral domain as (a) multiplicative modification of the SLSHT distribution and
(b) convolutive modification of the SLSHT distribution.

where each element z(x̂;n) for 0 ≤ n ≤ Ng can be a finite-norm, square in-

tegrable function on the unit sphere with the maximum spectral degree Lzn and

spherical harmonic expansion z(x̂;n) =
∑Nzn

c=0

(
zn
)
cYc(x̂), where Nzn = L2

zn +2Lzn.

The spectral response of each component of the filter function is defined as zn ,((
zn
)

0,
(
zn
)

1, · · · ,
(
zn
)
Nzn

)
,
(
Fz
)
(x̂;n).

We use the definition of signal transformation in the joint spatio-spectral domain

using the operator K as defined in (5.2) and relate the kernel ζ(x̂, ŷ) to the filter

function z(x̂) to define filtering operations in joint spatio-spectral domain. The

modified distribution v(x̂), which is obtained as either multiplication or convolution

of the filter function and the SLSHT distribution of the signal, may not be a valid

SLSHT distribution and it may not be possible to find the signal d(x̂), which exactly

describes the distribution v(x̂). Thus, the approximate approach as described

in Theorem 5.1 can be employed to determine the signal d(x̂), whose SLSHT

distribution is closest to the modified distribution in the least squares sense.

In the following two subsections, we define multiplicative and convolutive filter-

ing operations in the spatio-spectral domain, respectively, and formulate expres-

sions to determine the signal d(x̂) from the modified distribution v(x̂). We also

present the proposed filtering operations as linear transformations of the signal as

given in (5.12) and provide specific expressions for the spatio-spectral transforma-

tion matrix Υ in (5.13) for these two types of filtering operations.
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5.3.1 Multiplicative Modification of SLSHT Distribution

In time-frequency analysis, a time-domain signal can be filtered in the joint time-

frequency domain through multiplication of its time-frequency representation and

the filter function as described in [64, 65, 72–74, 80, 81]. Using SLSHT distribution

as a spatio-spectral representation of a signal on the sphere, we define analogous

multiplicative filtering in joint spatio-spectral domain.

Definition 5.2 (Multiplicative SLSHT Modification) Relating the kernel ζ(x̂, ŷ)

in (5.2) to the filter function z(x̂) as

ζ(x̂, ŷ) , z(x̂) δ(x̂, ŷ), (5.15)

where δ(x̂, ŷ) is the Dirac delta function on the sphere, we define component-wise

multiplication of the SLSHT distribution g(x̂) and the filter function z(x̂) to obtain

the multiplicative modified distribution (MMD), v(x̂) through

v(x̂;n) , z(x̂;n) g(x̂;n), (5.16)

for 0 ≤ n ≤ Ng, which results in

v(x̂) , z(x̂)� g(x̂). (5.17)

Multiplicative modification of the SLSHT distribution in spatio-spectral domain is

depicted in the first two blocks of Fig. 5.3(a).

Remark 5.2 Since each component of the SLSHT distribution describes the spa-

tially varying contribution of a spherical harmonic in the spatial domain, the multi-

plication of the filter function z(x̂) and the SLSHT distribution g(x̂) can be thought

of as a type of spatially-varying spectral filtering.

Remark 5.3 If the filter function z(x̂) is real, then the kernel ζ(x̂, ŷ) in (5.15) is

real and satisfies ζ(x̂, ŷ) = ζ(ŷ, x̂), which implies that the corresponding operator

is self adjoint.

The general least squares approximation method of v(x̂) is shown in the third

block of Fig. 5.3(a) according to (5.10). For the special case of exact recovery,

we can explicitly provide the expression for obtaining the signal exactly from the

modified distribution v(x̂).
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Lemma 5.1 If the MMD, v(x̂) given in (5.17), is a valid SLSHT distribution, then

the n-th spherical harmonic coefficient of the transformed signal d(x̂), denoted by
(
d
)
n, is related to the signal f(x̂) by

(
d
)
n =

1

K

∫

S2
f(x̂)wn(x̂)Yn(x̂) ds(x̂), (5.18)

where wn(x̂) is the result of isotropic convolution of the n-th filter component

z(x̂;n) and the azimuthally symmetric window function h(x̂). That is,

wn(x̂) =

∫

S2

(
D(φ, θ, 0)h

)
(ŷ) z(ŷ;n) ds(ŷ), x̂ = x̂(θ, φ). (5.19)

Proof

See Appendix A.2.

In what follows, we first explicitly discuss the case where the MMD, v(x̂), is a

valid SLSHT distribution and provide the elements of the transformation matrix

Υ for this special case. We then discuss the elements of the transformation matrix

Υ in the general approximation approach.

Lemma 5.2 Assume that the MMD, v(x̂), is a valid SLSHT distribution. Then

the spatio-spectral transformation matrix Υ in (5.12), which relates d to f , is given

by

Υ =
1

K

∫

S2

{
diag

(
z(x̂)

)
Ψ(x̂)

}
Nf
ds(x̂), (5.20)

where diag
(
z(x̂)

)
is the diagonal matrix with diagonal entries specified by z(x̂) and

{·}Nf selects the first sub-matrix of size (Nf + 1)× (Nf + 1). The entries of Υ are

Υu,u′ =
1

K

∫

S2
z(x̂;u)ψu,u′(x̂) ds(x̂)

=

min(Nh, Nzu )∑

r=0

1(
h
)

0
0

√
2p+ 1

T (u′; r;u)
(
h
)

0
p

(
zu
)
r, (p, q)↔ r. (5.21)

Proof

See Appendix A.2.

Lemma 5.3 For the multiplicative modification of the SLSHT distribution, the

general spatio-spectral transformation matrix Υ in (5.13) is simplified to

Υ =
1

E
(∫

S2
ΨH(x̂)

(
diag

(
z(x̂)

)
Ψ(x̂)

)
ds(x̂)

)
, (5.22)
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with entries given by

Υu,u′ =
1

E

Ng∑

n=0

Nh∑

r=0

Nh∑

r′=0

Nzn∑

c=0

4π√
(2p+ 1)(2p′ + 1)

(
h
)

0
p

(
h
)

0
p′

(
zn
)
c

× T (u; r;n)T (u′; r′;n)T (r; c; r′), (5.23)

where the mappings (`,m)↔ n, (p, q)↔ r, (p′, q′)↔ r′ and (s, t)↔ u are used.

Proof

See Appendix A.2.

We note that this approximate solution cannot be further simplified because of

the coupling of Wigner-3j symbols.

5.3.2 Convolutive Modification of the SLSHT Distribution

We now consider a signal transformation in the spatio-spectral domain as the con-

volutive modification of the SLSHT distribution, which can be achieved through

convolution of the filter function z(x̂) and the SLSHT distribution g(x̂). The con-

volutive modification can also be thought of as spatially-varying spectral filtering

of the signal, which is accomplished by filtering the spatially-varying spectral com-

ponents of the signal in the spatial domain. The analog of convolutive modification

in time-frequency analysis is smoothing of the time-frequency distribution to re-

move artifacts in the time-frequency domain [65, 97]. We first specify the kernel

ζ(x̂, ŷ) in terms of the convolutive filter function and then express this operation

as a linear transformation of the signal. Later, we discuss the special case in which

each component of the filter function is azimuthally symmetric.

Definition 5.3 (Convolutive SLSHT Modification) Let x̂ = x̂(θ, φ) and a

spatio-spectral filter function z(ŷ) be given according to Definition 5.1. The kernel

ζ(x̂, ŷ) in (5.2) is obtained by rotating each component of z(ŷ), such as z(ŷ;n),

as follows

ζ(x̂, ŷ) ,
(
D(φ, θ, 0)z

)
(ŷ)

=
((
D(φ, θ, 0)z

)
(ŷ; 0),

(
D(φ, θ, 0)z

)
(ŷ; 1), · · · ,

(
D(φ, θ, 0)z

)
(ŷ;Ng)

)′
.

(5.24)
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As a result, the convolutive modified distribution (CMD) v(x̂) will have elements

given by

v(x̂;n) =

∫

S2

(
D(φ, θ, 0)z

)
(ŷ;n) g(ŷ;n) ds(ŷ), x̂ = x̂(θ, φ), (5.25)

for 0 ≤ n ≤ Ng. More concisely, we can write

v(x̂) ,
(
z ~ g

)
(x̂), (5.26)

where ‘~’ denotes spherical convolution. This type of filtering in spatio-spectral

domain as convolutive modification of the SLSHT distribution is depicted in the

first two blocks of Fig. 5.3(b).

We note here that the convolution definition here, given by the operand symbol

‘~’ is different from the definition of convolutions presented in Chapter 3. Here,

we consider the special case of SO(3) convolution presented in (3.2) in Chapter 3,

with the consideration that the initial rotation around z-axis is zero.

Using the definition of the SLSHT distribution g(x̂) for signal f(x̂), we now

formulate an expression that relates the CMD v(x̂) to f =
(
Ff
)
(x̂). Such a

relation will be useful in finding the signal d(x̂) with spectral response d that

corresponds to the CMD v(x̂), and in expressing d as a linear transformation of

f . This is accomplished by defining the matrix Γ(x̂) , z(x̂) ~ Ψ(x̂) of size

(Ng + 1)× (Nf + 1) with entries

Γn,u(x̂) =

∫

S2

(
D(φ, θ, 0)z

)
(ŷ;n)ψn,u(ŷ) ds(ŷ)

=

min(Nh, Nzn )∑

r=0

p∑

q′=−p

√
4π

2p+ 1

(
h
)

0
p

(
zn
)
q′

p T (u; r;n)Dq,q′

p (φ, θ, 0), (5.27)

with x̂ = x̂(θ, φ) and r ↔ (p, q), which is obtained using (4.6) and (4.12). There-

fore, referring to (4.10) we express the CMD v(x̂) in (5.26) as

v(x̂) = Γ(x̂)f . (5.28)

Now, we derive the expressions for the spatio-spectral transform matrix Υ in (5.12)

for both exact and approximate cases.
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Lemma 5.4 If the CMD v(x̂) defined in (5.26) is a valid SLSHT distribution,

the spatio-spectral transform matrix Υ is obtained by using the inversion operation

defined in Theorem 4.1 as

Υ =
1

K

∫

S2

{
Γ(x̂)

}
Nf
ds(x̂), (5.29)

where the entries are obtained by integrating the elements of Γ(x̂) in (5.27) as

Υu,u′ =

min(Nh, Nzu )∑

r=0

p∑

q′=−p

1(
h
)

0
0

√
2p+ 1

(
h
)

0
p

(
zu
)
q′

p T (u′; r, u)

∫

S2
Dq,q′

p (φ, θ, 0) ds(x̂).

(5.30)

The integral above can be evaluated using the relation between spherical harmonic

function and Wigner-D function in (2.30) and the expression for the integral of

associated Legendre function [98] as

∫

S2
Dq,q′

p (φ, θ, 0) ds(x̂) = 2π δq,0

∫ π

0

d0,q′

p (θ) sin θ dθ (5.31)

= 2π





− 2q′ (p/2)! (p/2)!
√

(p− q′)!(p+ q′)!

p
(
(p+ q′)/2

)
!
(
(p− q′)/2

)
! (p+ 1)!

if p is even, q′ is even, and q = 0,

− q′π (p+ 1)!
√

(p− q′)!(p+ q′)!

p 22p+1
(
(p+ q′)/2

)
!
(
(p− q′)/2

)
!
(
(p+ 1)/2

)
!

if p is odd, q′ is odd, and q = 0,

0 otherwise.

(5.32)

Proof

The proof follows directly from (5.27) and is omitted for brevity.

Lemma 5.5 For the case that the CMD v(x̂) in (5.26) is not a valid SLSHT

distribution, the approximate solution presented in Theorem 5.1 specializes to

Υ =
1

E

∫

S2
ΨH(x̂) Γ(x̂) ds(x̂), (5.33)

with entries

Υu,u′ =
1

E

Ng∑

n=0

∫

S2
ψn,u(x̂)Γn,u′(x̂) ds(x̂)
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=
1

E

Ng∑

n=0

Nh∑

r=0

min(Nh, Nzn )∑

r′=0

p′∑

q′′=−p′

4π√
(2p+ 1)

(
h
)

0
p

1√
(2p′ + 1)

(
h
)

0
p′

×
(
zn
)
q′′

p′ T (u; r;n)T (u′; r′;n)

∫

S2
Dq′,q′′

p′ (φ, θ, 0)Yr(x̂) ds(x̂), (5.34)

where the mappings (p, q) ↔ r and (p′, q′) ↔ r′ are used. The integral in (5.34)

is the projection of Wigner-D function Dq′,q′′

p′ (φ, θ, 0) onto spherical harmonics and

can be evaluated by employing the expansion of the product of Wigner-D functions

using Wigner 3j symbols. Following the relation between Wigner-D functions and

spherical harmonics in (2.30), the integral in (5.34) can be expressed as

∫

S2
Dq′,q′′

p′ (φ, θ, 0)Y q
p (x̂) ds(x̂) =

√
4π

2p+ 1

∫ π

0

dq
′,q′′

p′ (θ)dq,0p (θ) sin θdθ

∫ 2π

0

e−i(q−q
′)φdφ

= 2π

√
4π

2p+ 1

∫ π

0

dq
′,q′′

p′ (θ)dq
′,0
p (θ) sin θdθ, (5.35)

where the integral over θ can be evaluated by employing the following expansion of

product of Wigner-d functions in terms of Wigner-3j symbols and then using the

computation of integral given in (5.31)

dq
′,q′′

p′ (θ)dq
′,0
p (θ) = (−1)q

′′
p′+p∑

c=|p′−p|
(2c+ 1) d0,q′′

c (θ)

(
p′ p c

q′ q′ −2q′

)(
p′ p c

q′′ 0 −q′′

)
.

(5.36)

Proof

We use (5.10), (5.12), and (5.28) to infer (5.33). Equation (5.34) follows from (5.27)

and (A.10), where the latter is defined in Appendix A.2.

Again, further simplification of this approximate solution is not possible because

of coupling of Wigner-3j symbols and irreducible Wigner-D functions. However,

for the special case where each component of the filter function is azimuthally

symmetric, we obtain further simplifications as follows.

5.3.2.1 Special Case – Azimuthally Symmetric Filter Function

If each component of the filter function is azimuthally symmetric, then
(
zn
)
q′′

p′ =

0 for q′′ 6= 0 in (5.34) for all n ∈ [0, Ng]. Using the relation between Wigner-

D functions and spherical harmonics in (2.30) and the orthonormal property of
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spherical harmonics, the expression for the entries Υu,u′ in (5.34) simplifies to

Υu,u′ =
1

E

Ng∑

n=0

min(Nh, Nzn )∑

r=0

( 4π

2p+ 1

)3/2∣∣(h
)

0
p

∣∣2 (zn
)

0
p

× T (u; r;n)T (u′; r;n), (p, q)↔ r. (5.37)

Let us assume that in addition to being azimuthally symmetric, the components

of the filter function also satisfy z(x̂;n) = z(x̂; `) with the mapping (`,m)↔ n for

all n ∈ [0, Ng], which indicates that there is the same filter function component of

degree ` for all the spherical harmonic orders −` ≤ m ≤ `. With this assumption

and employing the orthogonality relations of Wigner-3j symbols [40], Υu,u′ in (5.37)

simplifies to

Υu,u′ =
1

E

Lg∑

`=0

min(Lh, Lzn )∑

p=0

(2`+ 1)

√
4π

2p+ 1

(
z`
)

0
p

∣∣(h
)

0
p

∣∣2
(
s p `
0 0 0

)2

δu,u′ (5.38)

and the spatio-spectral transformation matrix Υ becomes a diagonal matrix.

5.4 Examples

In this section, we provide an illustration of the filtering operation in the spatio-

spectral domain. In our experiments, we have implemented the method outlined

in [31] to calculate the spherical harmonic coefficients and the triple product (2.23)

in MATLAB. We use equiangular sampling with M×M samples on the sphere as θm =

πm/M , φm = 2πm/M for m = 0, 1, . . . ,M−1. Note that the exact quadrature rule

can be evaluated using this tessellation. We use the most optimally concentrated

azimuthally symmetric band-limited Slepian eigenfunction as the window function

to obtain the SLSHT distribution of a signal [1,27]. For inverse spherical harmonic

transform of a function with the maximum spherical harmonic degree L, we use the

minimum resolution M = 2(L+1) for the exact quadrature rule [31]. Furthermore,

we consider unit energy normalized functions in our experiments.

5.4.1 First Example

In our first example, we consider the band-limited azimuthally symmetric signal

f(x̂) = f(θ) on the sphere with maximum spherical harmonic degree Lf = 60.
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Figure 5.4: Signal f(x̂) = f(θ): (a) as a function of co-latitude θ and (b) on the
sphere. (c) Spectrum of the signal f vs degree ` for order m = 0,

(
f
)

0
` . (d) SLSHT

distribution g(x̂) of the signal as a function of degree ` and co-latitude θ.

The signal under consideration is shown in Fig. 5.4(a) and (b) and is obtained by

spectrally truncating the following signal f1(x̂) defined as

f1(x̂) = f1(θ) ,





1, θ ∈ [0, π/8] ∪ [π/4, 3π/8] ∪ [π/2, 5π/8] ∪ [3π/4, 7π/8];

0, otherwise;

(5.39)

to a maximum spherical harmonic degree Lf . Since the signal is azimuthally sym-

metric, only zero-order spherical harmonic coefficients
(
f
)

0
` can be non-zero, which

are shown in Fig. 5.4(c). Since we are seeking the contribution of zero-order spher-

ical harmonics, the SLSHT distribution g(x̂) is shown in Fig. 5.4(d) as a function

of co-latitude θ and degree `. The SLSHT distribution is obtained using an az-

imuthally symmetric eigenfunction window of maximum degree Lh = 60, which is
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spatially concentrated in the region 0 ≤ θ ≤ π/30. We are interested to obtain the

MMD v(x̂), defined in (5.17), using the following filter function z(x̂)

z(x̂; `, 0) =





1, 30 ≤ ` ≤ 50, π/4 ≤ θ ≤ π/2, 0 ≤ φ < 2π;

0, otherwise;
(5.40)

where the maximum spectral degree is considered to be Lzn = 60 for each non-zero

filter component z(x̂; `, 0) for 30 ≤ ` ≤ 50. The filter function z(x̂) is shown in

the spatio-spectral domain in Fig. 5.5(a) as a function of degree ` and co-latitude

θ. The negligible ringing, which can be observed outside the spatio-spectral region

defined in (5.40) along the spatial domain, is due to the consideration that each

component of filter function is band-limited with Lzn = 60. Since the filter function

truncates g(x̂) in both the spatial and spectral domains, the resulting MMD v(x̂)

is not a valid SLSHT distribution. Therefore, we employ the approximate solution

to determine the signal d(x̂) = d(θ), the SLSHT distribution of which best approx-

imates the MMD v(x̂) in the least squares sense. The approximated distribution

v̂(x̂) is shown in Fig. 5.5(b) which is the SLSHT distribution of signal d(x̂). The

signal d(x̂) is shown in Fig. 5.5(c) and Fig. 5.5(d) in the spatial and spectral do-

mains, respectively. The approximated distribution v̂(x̂) shows that the signal is

concentrated around the desired spatio-spectral region. There are some artifacts

near the poles at θ = 0 and θ = π, which is due to the fact that zero-order spherical

harmonics have relatively higher values near the poles.

5.4.2 Second Example

The type of filtering shown in Section 5.4.1 which truncates the signal in the spatio-

spectral domain can also be considered as spatial truncation followed by spectral

truncation. However, this will not ensure concentration of the filtered signal in

the spatio-spectral domain. In order to further illustrate the capability of the

proposed framework, we consider another example of multiplicative modification

of the SLSHT distribution, in which we carry out spatially-varying spectral filtering

in the spatio-spectral domain.
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Figure 5.5: (a) Spatially-varying filter z(x̂) as defined in (5.40). (b) The approxi-
mated distribution v̂(x̂) as the SLSHT distribution of the signal d(x̂). (c) Signal
d(x̂) = d(θ) in the spatial domain as a function of co-latitude θ and (d) in the
spectral domain as d vs degree ` for order m = 0.

We consider the following filter function z(x̂) in the spatio-spectral domain

z(x̂; `, 0) =





1, 0 ≤ ` ≤ 10, 0 ≤ θ ≤ π, 0 ≤ φ < 2π;

1, 11 ≤ ` ≤ 70, (`+ 20)π/120 ≤ θ ≤ π; 0 ≤ φ < 2π

1, 71 ≤ ` ≤ 120, 3π/4 ≤ θ ≤ π, 0 ≤ φ < 2π;

0, otherwise;,

(5.41)

which is shown in Fig. 5.6(a), where we have again assumed that each filter function

component is band-limited with the maximum spherical harmonic degree equal to

Lzn = 60. It is evident from Fig. 5.6(a) that the filter function is spatially-varying

in the spatio-spectral domain and thus filters out different spectral contents in

different spatial regions. For example, it filters the contribution of all spherical
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Figure 5.6: (a) Spatially-varying filter z(x̂) as defined in (5.41). (b) The approxi-
mated distribution v̂(x̂) as the SLSHT distribution of the signal d(x̂). (c) Signal
d(x̂) = d(θ) in the spatial domain as a function of co-latitude θ and (d) in the
spectral domain as d vs degree ` for order m = 0.

harmonics of degree greater than 10 around θ = π/4, whereas it filters spherical

harmonics of degree greater than 70 around θ = 3π/4. Thus such type of filtering

can be regarded as spatially-varying low pass filtering, where the bandwidth of the

filter function is changing with the co-latitude. Using the proposed least squares so-

lution, we determine the signal d(x̂) whose SLSHT distribution best approximates

the MMD v(x̂) in the least squares sense. The approximated distribution v̂(x̂)

in the spatio-spectral domain and the signal d(x̂) in spatial and spectral domains

are shown in Fig. 5.6(b), (c) and (d), where the effect of spatially-varying low-pass

filtering is apparent.
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5.5 Summary of Contributions

In this chapter, we have presented a framework to transform a signal in the spatio-

spectral domain using SLSHT distribution of a signal presented in Chapter 4. Due

to transformation of SLSHT distribution of a signal in spatio-spectral domain,

there is a possibility that there exists no signal which corresponds to the modified

distribution. To address this problem, we have presented solution to find a signal,

the SLSHT distribution of which optimally approximates the modified distribution

in the least square sense. The proposed framework has also been formulated as a

linear transformation of a signal.

Later, we investigated multiplicative and convolutive modification of SLSHT

distribution in the spatio-spectral domain. The power of the technique was illus-

trated in two examples of spatially-varying spectral filtering that allows processing

of signals in joint spatio-spectral domain, in a way that cannot be accomplished

separately in either spatial or spectral domain. The contributions made in this

chapter are as follows.

Addressing Q5 posed in Section 1.2.1:

• Using the SLSHT distribution as a spatio-spectral representation of a signal,

we have presented a mechanism to transform, modify and filter the signal in

the joint spatio-spectral domain to realize spatially varying spectral filtering.

• The signal transformation or modification has been formulated using an in-

tegral operator acting on SLSHT distribution in spatio-spectral domain. We

have also presented the action of integral operator as linear transformation

of the signal, where the linear transformation matrix is expressed in terms of

the kernel of an integral operator.

Addressing Q6 posed in Section 1.2.1:

• As in the time-frequency analogy, the transformation in the spatio-spectral

domain can lead to a modified distribution that is not a SLSHT distribution of

physically valid spatial signal. We have presented an admissibility condition

on the kernel of an integral operator, which if satisfied, ensures that the

modified distribution is a SLSHT distribution of a valid signal.

• For the case when the admissibility condition is not satisfied, we have formu-

lated and solved an optimization problem to find the closest physically valid
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signal to the modified SLHT distribution by deriving an expression for an

appropriate inverse spatio-spectral transform.

Addressing Q7 posed in Section 1.2.1:

• We illustrated two types of transformation to the SLSHT distribution, both

being instances of a general linear integral operator. However, the technique

we developed to recover a spectral response of a valid signal on the unit sphere

from a modified SLSHT distribution is not limited to linear transformations

in the spatio-spectral domain.

• Multiplicative modification and convolutive modification of the SLSHT distri-

bution have been considered. Both can be regarded as representing spatially

varying spectral filtering. For both multiplicative modification and convolu-

tive modification, we haveformulated these modifications as linear transfor-

mation on the signal.





Chapter 6

Directional Spatially Localized

Spherical Harmonic Transform

6.1 Introduction

In obtaining the SLSHT distribution presented in Chapter 4 for spatio-spectral

representation of a signal, we used an azimuthally symmetric window function for

spatial localization. The use of azimuthally symmetric window provides simplifi-

cation in the sense that each component of the SLSHT distribution is defined on

S2. However, the use of an azimuthally symmetric window function cannot dis-

criminate localized directional features in the spatio-spectral domain. Here, we

extend the definition of SLSHT distribution presented in Chapter 4 and propose a

transform for signals defined on the sphere that reveals their localized directional

content in the spatio-spectral domain when used in conjunction with an asym-

metric window function. We call this transform the directional spatially localized

spherical harmonic transform (directional SLSHT). We present an inversion rela-

tion to synthesize the original signal from its directional-SLSHT distribution for an

arbitrary window function. As an example of an asymmetric window, we propose

to use the most concentrated band-limited eigenfunction in an elliptical region for

spatial localization. As an illustration, we apply the proposed directional SLSHT

on the Mars topographic data-set and show its capability to reveal directional fea-

tures in spatio-spectral domain. Finally, since such typical data-sets on the sphere

are of considerable size and the directional SLSHT is intrinsically computationally

demanding depending on the band-limits of the signal and window, we develop a

93
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fast algorithm for efficient computation of the transform. The floating point preci-

sion numerical accuracy of the fast algorithm is demonstrated and a full numerical

complexity analysis is presented.

This chapter is organized as follows. We present the formulation of the di-

rectional SLSHT, its harmonic analysis and signal reconstruction from the SLSHT

distribution in Section 6.2. Different algorithms for evaluation of the SLSHT distri-

bution are provided in Section 6.3 and detailed analysis of the asymmetric window

function is presented in Section 6.4. In Section 6.5, we show timing and accuracy

results of our algorithms and an illustration of the transform.

6.2 Directional SLSHT

We describe in this section the directional SLSHT, which is capable of revealing

directional features of signals in the spatio-spectral1 domain. For spatial localiza-

tion, we consider the band-limited azimuthally asymmetric window function which

is spatially concentrated in some asymmetric region around the north pole. Since

the rotation around the z-axis does not have any effect on an azimuthally sym-

metric function, the localized spherical harmonic transform using an azimuthally

symmetric window function can be parameterized on the sphere. However, if an az-

imuthally asymmetric window is used to obtain localization in the spatial domain,

the rotation of the window function is fully parameterized with the consideration

of all three Euler angles (ϕ, ϑ, ω) ∈ SO(3). We refer to the spatially localized trans-

form using an asymmetric window as the directional SLSHT. Here, we first define

the directional SLSHT distribution which presents the signal in the spatio-spectral

domain. Later in this section, we present the harmonic analysis of SLSHT distribu-

tion and provide an inversion relation to obtain the signal from its given directional

SLSHT distribution.

6.2.1 Forward Directional SLSHT

Definition 6.1 (Directional SLSHT) For a signal f ∈ L2(S2), define the direc-

tional SLSHT distribution component g(ρ; `,m) ∈ L2(SO(3)) of degree ` and order

m as the spherical harmonic transform of a localized signal where localization is

1In this chapter, when we refer to spatio-spectral, we consider the SO(3) spatial domain,
instead of S2. This is because that we are considering all possible rotations, parameterized using
Euler angles which form the SO(3) domain.
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provided by the rotation operator Dρ acting on the window function h ∈ L2(S2),

i.e.,

g(ρ; `,m) ,
∫

S2
f(x̂)

(
Dρh

)
(x̂)Y m

` (x̂) ds(x̂) (6.1)

for 0 ≤ ` ≤ Lg, |m| ≤ `, where Lg = Lf + Lh denotes the maximum spheri-

cal harmonic degree for which the distribution components g(ρ; `,m) are non-zero,

and Lf and Lh denote the band-limits of the signal f and the window function

h, respectively. Also, each distribution component g(ρ; `,m) is band-limited in

ρ = (ϕ, ϑ, ω) ∈ SO(3) with maximum degree Lh, i.e., when expressed in terms

of Wigner-D functions. We elaborate on this later in this chapter. Furthermore,

we consider unit energy normalized window functions such that 〈h, h〉 = 1.

Remark 6.1 The directional SLSHT distribution component in (6.1) can be inter-

preted as the spherical harmonic transform of the localized signal where the window

function h provides asymmetric localization at spatial position x̂ = x̂(ϑ, ϕ) ∈ S2

and the first rotation, through ω, determines the orientation of the window func-

tion at x̂. If the window function is azimuthally symmetric, this orientation of the

window function by ω becomes invariant and the SLSHT distribution components

are defined on L2(S2) as presented in Chapter 4.

Since the maximum spectral degree for which the SLSHT distribution is defined

is Lg = Lf +Lh, we consider the band-limited window function such that Lh ≤ Lf

to avoid extending Lg significantly above Lf . We discuss the localization of the

window function in the spatial and spectral domains later in the chapter.

In order to represent functions on S2 and SO(3), it is necessary to adopt ap-

propriate tessellation schemes to discretize both the unit sphere domain and the

Euler angle domain of SO(3). We first describe our chosen tessellation schemes

and then we provide harmonic analysis of directional SLSHT and the inversion of

signal from direction SLSHT.

6.2.2 Discretization of S2 and SO(3)

We consider tessellation (sampling) schemes that support a sampling theorem for

band-limited functions, which is equivalent to supporting an exact quadrature.

For the unit sphere domain, we adopt the equiangular tessellation scheme [41]

defined as SL = {θnθ = π(2nθ + 1)/(2L + 1), φnφ = 2πnφ/(2L + 1) : 0 ≤ nθ ≤



96 Directional Spatially Localized Spherical Harmonic Transform

L, 0 ≤ nφ ≤ 2L}, which is a grid of (L + 1) × (2L + 1) sample points on the

sphere (including repeated samples of the south pole) that keeps the sampling in

θ and φ independent. For a band-limited function on the sphere f ∈ L2(S2) with

maximum spherical harmonic degree Lf , sampling on the grid SLf ensures that all

information of the function is captured in the finite set of samples and, moreover,

that exact quadrature can be performed [41]. Note that this sampling theorem

was developed only recently [41] and requires approximately half as many samples

on the sphere as required by alternative equiangular sampling theorems on the

sphere [31].

For the Euler angle representation of the rotation group SO(3), we consider the

equiangular tessellation scheme EL = {ϕnϕ = 2πnϕ/(2L + 1), ϑnϑ = 2πnϑ/(2L +

1), ωnω = 2πnω/(2L + 1) : 0 ≤ nϕ, nω ≤ 2L, 0 ≤ nϑ ≤ L}. Again for a function

f ∈ L2(SO(3)) with maximum spectral degree Lf , the sampling of a function f on

ELf ensures that all information of the function is captured and also permits exact

quadrature (which follows from the results developed on the sphere [41]).

6.2.3 Harmonic Analysis

We now present the formulation of the directional SLSHT distribution if the signal

f and the window function h are represented in the spectral domain. Using the

expression for the spherical harmonics of a rotated function in (2.27), we can write

the SLSHT distribution component g(ρ; `,m) in (6.1) as

g(ρ; `,m) =

Lf∑

`′=0

`′∑

m′=−`′

(
f
)
m′

`′

Lh∑

p=0

p∑

q=−p

p∑

q′=−p

(
h
)
q′

p D
q,q′

p (ρ)T (`′,m′; p, q; `,m), (6.2)

where

T (`′,m′; p, q; `,m) =

∫

S2
Y m′

`′ (x̂)Y q
p (x̂)Y m

` (x̂) ds(x̂)

denotes the spherical harmonic triple product and is given in (2.23) and (2.24).

Remark 6.2 By comparing g(ρ; `,m) in (6.2) with (2.33), we note that the band-

limit of g(ρ; `,m) in ρ is given by Lh. Since `′ ≤ Lf and p ≤ Lh in (6.2), our

statement that the distribution component g(ρ; `,m) is non-zero for ` ≤ Lg =

Lf+Lh follows since the triple product T (`′,m′; p, q; `,m) is non-zero for ` ≤ Lf+Lh

only.
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6.2.4 Inverse Directional SLSHT

Here, we define the inverse directional SLSHT to reconstruct a signal from its

SLSHT distribution. The original signal can be reconstructed from its directional

SLSHT distribution through the spectral domain marginal, that is, by integrating

the SLSHT distribution components over the spatial domain SO(3) [4]. Using our

harmonic formulation in (6.2), define
(
f̂
)
m
` as the integral of the SLSHT distribu-

tion component g(ρ; `,m) over SO(3) giving

(
f̂
)
m
` =

∫ 2π

0

∫ π

0

∫ 2π

0

g(ρ; `,m)dρ, 0 ≤ ` ≤ Lf

=

Lh∑

`′=0

`′∑

m′=−`′

(
f
)
m′

`′

Lh∑

p=0

p∑

q=−p

p∑

q′=−p

(
h
)
q′

p T (`′,m′; p, q; `,m)

∫ 2π

0

∫ π

0

∫ 2π

0

Dq,q′

p (ρ) dρ

= 8π2

Lh∑

`′=0

`′∑

m′=−`′

(
f
)
m′

`′

(
h
)

0
0 T (`′,m′; 0, 0; `,m)

=
√

16π3
(
h
)

0
0

(
f
)
m
` , (6.3)

where we have used the orthogonality relation of Wigner-D functions (see (2.32)).

Using the expression in (6.3), we can find the spherical harmonic coefficient
(
f
)
m
`

of the signal f as

(
f
)
m
` =

(
f̂
)
m
`√

16π3
(
h
)

0
0

, (6.4)

which indicates that we only need to know the DC-component of the window

function
(
h
)

0
0 in order to obtain the signal from its directional SLSHT distribution.

It further imposes the condition that the DC-component of the window function

must be non-zero. Although the distribution components in (6.2) are defined up

to degree Lg = Lf + Lh, we only require the components up to Lf for signal

reconstruction.

Remark 6.3 The signal can also be reconstructed from its SLSHT distribution by

evaluating

∫ 2π

0

∫ π

0

∫ 2π

0

g(ρ; `,m)Dp
q,q′(ρ)dρ = 8π2

Lh∑

`′=0

`′∑

m′=−`′

(
f
)
m′

`′

Lh∑

p=0

p∑

q=−p
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×
p∑

q′=−p

(
h
)
q′
p

2p+ 1
T (`′,m′; p, q; `,m) (6.5)

for all p ≤ Lh, |q|, q′| ≤ p and for all ` ≤ Lg, |m| ≤ ` and then employing the

orthogonality relations of Wigner-3j symbols to decouple the spherical harmonic

coefficients of the window function h and the signal f . We used this approach in

Chapter 5 (see Theorem 5.1) to invert the signal from its modified SLSHT dis-

tribution, where the SLSHT distribution is obtained using azimuthally symmetric

window function. This approach does not impose restriction on the DC-component

of the window function to be non-zero, instead, it requires the knowledge of the

energy of the window function. In this work, we consider the inversion of a signal

presented in (6.3) and (6.4), as this is the most efficient formulation in terms of

computational complexity.

Computing the forward and inverse directional SLSHT is computationally de-

manding. Since the directional SLSHT distribution components g(ρ; `,m) in (6.1)

are defined for ` ≤ Lg, the number of distribution components are of the order

L2
g, while the sampling of ρ is of the order L3

h; thus, direct evaluation of the di-

rectional SLSHT distribution is prohibitively computationally expensive for large

values of Lg. Therefore efficient algorithms need to be developed which reduce the

computational complexity. We address this problem in the next section.

6.3 Efficient Computation of Directional SLSHT

Distribution

Here, we present efficient algorithms for the computation of the directional SLSHT

distribution of a signal and reconstruction of a signal from its directional SLSHT

distribution. First, we discuss the computational complexities if the SLSHT distri-

bution components are computed using direct quadrature as given in (6.1) or using

the harmonic formulation in (6.2). Later, we develop an alternative harmonic for-

mulation which reduces the computational burden. Finally, we present an efficient

algorithm that incorporates a factoring of rotations [84] and exploits the FFT.

First we need to parameterize the required tessellation schemes for S2 for the

representation of the signal f and the window h and for SO(3) which forms the

spatial domain of the directional SLSHT distribution. Since the maximum spectral
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degree of the signal f is Lf , we therefore consider the equiangular tessellation SLf

to represent f . Since the maximum degree for all SLSHT distribution components

g(ρ; `,m) in ρ is Lh, we therefore consider the tessellation ELh to represent the

SLSHT distribution components on L2(SO(3)).

6.3.1 Direct Quadrature and Harmonic Formulation

We define the forward spatio-spectral transform as evaluation of each SLSHT distri-

bution component g(ρ; `,m). Evaluation of the forward spatio-spectral transform

using exact quadrature in (6.1) requires the computation of a two dimensional

summation over the tessellation of S2 for each 3-tuple (ϕ, ϑ, ω). Since there are

O(L3
h) such 3-tuples in the tessellation scheme ELh and the SLSHT distribution

components are of the order O(L2
f ), the computational complexity to compute all

distribution components using direct quadrature is O(L4
fL

3
h). Using the harmonic

formulation in (6.2), the complexity to compute each SLSHT distribution compo-

nent is O(L2
fL

6
h) and to compute all SLSHT distribution components is O(L4

fL
6
h).

Although the harmonic formulation in (6.2) is useful to establish that the signal can

be reconstructed from the directional SLSHT distribution, it is much more compu-

tationally demanding than direct quadrature. We develop efficient algorithms in

the next subsection which improve the computational complexity of the harmonic

formulation and make it more efficient than direct quadrature.

For the inverse directional SLSHT distribution, we only need to integrate over

SO(3) to obtain the signal in the spherical harmonic domain as proposed in (6.3).

Since the integral can be evaluated by a summation over all Euler angles using

quadrature weights, an efficient way to recover the signal from its SLSHT distribu-

tion is through direct quadrature, with complexity of O(L3
h) for each distribution

component and O(L2
fL

3
h) for all components.

In order to evaluate the integral in (6.3) exactly, we need to define quadrature

weights along Euler angle ϑ in the tessellation ELh . We evaluate the integral in
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(6.3) by the following summation2

(
f̂
)
m
` =

1

(2Lh + 1)3

2Lh∑

nϕ=0

Lh∑

nϑ=0

2Lh∑

nω=0

g(ϕnϕ , ϑnϑ , ωnω ; `,m) q(ϑnϑ), (6.6)

where the quadrature weights q(ϑnϑ) follow from [41], with

q(ϑnϑ) =





4π2
(
bLh

2
c+ 1

2

)−1
, ϑnϑ = 0;

8π2
Lh∑

m=−Lh
w(−m) cosmϑnϑ , otherwise;

(6.7)

where w(m) is defined as [41]

w(m) =





±iπ
2
, m = ±1;

0, m odd, m 6= 1;

2
1−m2 , m even.

(6.8)

6.3.2 Fast Algorithm for Forward Directional SLSHT

Here, we develop a fast algorithm to reduce the computational complexity of the

forward SLSHT. We first consider an alternative harmonic formulation of the for-

ward SLSHT and then employ the factoring of rotations approach which was first

proposed in [84] and has been used in the implementations of the fast spherical

convolution [45] and the directional spherical wavelet transform [24].

We may write the directional SLSHT distribution component g(ρ; `,m) in (6.1)

as a spherical convolution [24] of h and the spherical harmonic modulated signal

f Y m
` , giving

g(ρ; `,m) =

Lh∑

p=0

p∑

q=−p

p∑

q′=−p

(
fY m

`

)
q
p

(
h
)
q′

p D
q,q′

p (ϕ, ϑ, ω), (6.9)

2In the evaluation of (6.6) we have computed the summation over 2Lh + 1 sample points in
both ϕ and ω. This is due to the tessellation ELh

required to capture the entire information
content of g(ϕ, ϑ, ω; `,m). However, if one were interested in recovering f only, then given the

quadrature rule in [41]
(
f̂
)
m
` in (6.6) could be computed exactly with only Lh + 1 sample points

in ϕ and ω.
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which can be expressed, using the definition of the Wigner-D function in (2.28), as

g(ρ; `,m) =

Lh∑

p=0

( p∑

q=−p

( p∑

q′=−p

(
fY m

`

)
q
p

(
h
)
q′

p d
q,q′

p (ϑ)e−iq
′ω
)
e−iqϕ

)
. (6.10)

The band-limit of the spherical harmonic modulated signal f Y m
` is Lf + `.

Since the maximum ` for which g is non-zero is Lf + Lh, we must compute up to

f Y m
Lf+Lh

, which is band-limited to 2Lf + Lh. However, we only need to compute

the spherical harmonic coefficients
(
fY m

`

)
q
p of the modulated signal up to degree

p ≤ Lh, for all ` and m. Therefore, the computation of the spherical harmonic

transform of f Y m
` is an interesting sub-problem. In order to serve the purpose, we

use a separation of variable technique given by

(
f Y m

`

)
q
p = Nm

` N
q
p

∫ π

0

Pm
` (cos θ)P q

p (cos θ)

∫ 2π

0

f(θ, φ)ei(m−q)φdφ

︸ ︷︷ ︸
I(θ,m−q)

sin θdθ. (6.11)

Since 0 ≤ ` ≤ Lf + Lh and 0 ≤ p ≤ Lh, we need to consider the signal f Y m
`

sampled on the grid S2Lf+2Lh for the explicit evaluation of exact quadrature (note

that sampling in φ could be optimized given |m− q| ≤ Lf + 2Lh but this would

require a different tessellation of the sphere and will not alter the overall complexity

of the computation). Using (6.11), the integral over φ, giving I(θ,m − q), can be

computed first in O(L2
f log2 Lf ) for all m − q. Once I(θ,m − q) is computed, the

exact quadrature weights that follow from [41] can be used to evaluate the integral

over θ in O(Lf ) for each p, q, `, m and in O(L3
fL

2
h) for all p, q, `, m. Thus the

overall complexity to compute the spherical harmonic transform of the modulated

signal f Y m
` up to degree Lh is O(L3

fL
2
h).

By factoring the single rotation by (ϕ, ϑ, ω) into two rotations [24,45,84]

Dρ = Dρ1 Dρ2 , ρ = (ϕ, ϑ, ω), ρ1 = (ϕ− π/2,−π/2, ϑ), ρ2 = (0, π/2, ω + π/2),

(6.12)

and noting the effect of rotation on spherical harmonic coefficients in (2.27), we

can write the Wigner-D function in (2.28) as

Dq,q′

p (ϕ, ϑ, ω) = iq−q
′

p∑

q′′=−p
∆q′′q
p ∆q′′q′

p e−iqϕ−iq
′′ϑ−iq′ω, (6.13)
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where ∆qq′
p = dq,q

′
p (π/2) and we have used the following symmetry properties of

Wigner-d functions [87]

dq,q
′

p (ϑ) = (−1)q−q
′
dq,q

′

p (−ϑ) = (−1)q−q
′
d−q,−q

′

p (ϑ) = (−1)q−q
′
dq

′,q
p (ϑ) = d−q

′,−q
p (ϑ)

(6.14)

Using the Wigner-D expansion given in (6.13), we can write the alternative har-

monic formulation of the SLSHT distribution component g(ρ; `,m) in (6.9) as

g(ρ; `,m) =

Lh∑

p=0

p∑

q=−p

p∑

q′=−p

(
fY m

`

)
q
p

(
h
)
q′

p i
q−q′

p∑

q′′=−p
∆q′′q
p ∆q′′q′

p e−iqϕ−iq
′′ϑ−q′ω,

(6.15)

where ρ = (ϕ, ϑ, ω). By reordering the summations we can write

g(ρ; `,m) =

Lh∑

q=−Lh

Lh∑

q′=−Lh

Lh∑

q′′=−Lh

Cq,q′,q′′(`,m) e−iqϕ−iq
′′ϑ−q′ω, ρ = (ϕ, ϑ, ω),

(6.16)

where

Cq,q′,q′′(`,m) = iq−q
′

Lh∑

p=max(|q|,|q′|,|q′′|)
∆q′′q
p ∆q′′q′

p

(
fY m

`

)
q
p

(
h
)
q′

p . (6.17)

Comparatively, computation of the SLSHT distribution components using the ex-

pression given by (6.16) is not more efficient than the initial expression (6.10).

However, the presence of complex exponentials can be exploited by employing

FFTs to evaluate the involved summations.

The objective of factoring the rotations is to carry out the ϑ rotation along the

y-axis as a rotation along the z-axis. The rotations along the z-axis are expressed

using complex exponentials and thus these rotations can be applied with much less

computational burden, by exploiting the power of an FFT, relative to a rotation

about the y-axis. All three rotations which characterize the spatial domain of the

SLSHT distribution components appear in complex exponentials in (6.16) and thus

we can use FFTs to evaluate the summation of Cq,q′,q′′(`,m) over q, q′ and q′′. First

we need to compute Cq,q′,q′′(`,m) for each ` and for each m which requires a one-

dimensional summation over three dimensional grid formed by q, q′ and q′′ and thus
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can be computed in O(L4
h). Using Cq,q′,q′′(`,m), the summation over the complex

exponentials in (6.16) can be carried out in O(L3
h log2 Lh) using FFTs. The overall

complexity of this approach is dominated by the computation of Cq,q′,q′′(`,m), that

is, O(L4
h) for each SLSHT distribution component and O(L2

fL
4
h) for the complete

SLSHT distribution. We note that the evaluation of Cq,q′,q′′(`,m) requires the

computation of ∆p
qq′ which can be evaluated over the (q, q′) plane for each p using

the recursion formula of [88] with a complexity of O(L2
h). Since p is of order Lh,

the ∆ matrices can be evaluated in O(L3
h), which does not change the overall

complexity of our proposed algorithm. The overall asymptotic complexity of our

fast algorithm is thus O(L3
fL

2
h + L2

fL
4
h).

Remark 6.4 Since the complexity to compute the spherical harmonic transform of

the modulated signal f Y m
` up to degree Lh is O(L2

f log2 Lf+LfL
2
h) for each `, m, the

complexity of our fast algorithm to compute one SLSHT distribution component is

O(L2
f log2 Lf +LfL

2
h+L4

h). The factor L2
f log2 Lf in the complexity does not change

if we compute spherical harmonic transform of f Y m
` up to degree Lh for all `, m

instead of each `, m.

Remark 6.5 In order to evaluate (6.10), we note that the separation of variables

approach [28] can be used as an alternative to the factoring of rotation approach to

develop a fast algorithm. This is due to the factorized form of Wigner-D function

and consideration of the equiangular tessellation scheme for SO(3), which keeps the

independence between the samples along different Euler angles. In terms of compu-

tational complexity, the separation of variable approach has the same computational

complexity as the factoring of rotation approach. However, the separation of vari-

able approach needs to compute Wigner-d functions for all values of ϑ but only

requires a two dimensional FFT, whereas the factoring of rotation approach only

requires the evaluation of Wigner-d function for π/2 but requires a three dimen-

sional FFT. Since both approaches have the same complexity, we use the factoring

of rotation in our implementation of the fast algorithm.

Remark 6.6 If we want to analyze the signal f with multiple window functions,

then we do not need to recalculate the spherical harmonic transform of the modu-

lated signal f Y m
` , which accounts for the O(L3

fL
2
h) factor in the overall complexity.

Once it is computed, the SLSHT distribution can be computed in O(L2
fL

4
h) time

for each window function of the same band-limit using the proposed efficient imple-

mentation.



104 Directional Spatially Localized Spherical Harmonic Transform

Our proposed formulation and efficient implementation can be further optimized

in the case of a steerable window function. Steerable functions have an azimuthal

harmonic band-limit in m that is less than the band-limit in ` (see [16,28] for further

details about steerability on the sphere). In this case, the L2
fL

4
h factor contributing

to the overall asymptotic complexity of the fast algorithm is reduced to L2
fL

3
h.

Furthermore, we may then compute the directional SLSHT for any continuous

ω ∈ [0, 2π) from a small number of basis orientations (due to the linearity of the

SLSHT).

If the signal and window function are real, the computational time can be

further reduced by considering the conjugate symmetry relation of the spherical

harmonic coefficients. Furthermore, in this setting, the SLSHT distribution com-

ponents also satisfy the conjugate symmetry property

g(ρ; `,−m) = (−1)m g(ρ; `,m) (6.18)

and we do not need to compute the SLSHT distribution components of negative

orders.

6.4 Window Localization in Spatial and Spectral

Domains

The directional SLSHT distribution is the spherical harmonic transform of the

product of two functions, the signal f and the rotated window function h and we

must be careful in interpreting the directional SLSHT distribution in the sense

that we do not mistake using the signal to study the window because there is no

distinction mathematically. The window function should be chosen such that it

provides spatial localization in some spatial region around the north pole (origin).

Since we have considered a band-limited window function, the window function

cannot be perfectly localized in the spatial domain due to the uncertainty principle

on the sphere [90]. However, it can be optimally localized by maximizing the energy

concentration of the window function in the desired directional region [27].

The interpretation of the directional SLSHT distribution depends on the chosen

window function. The window function with maximum localization in some defined

asymmetric region provides directional localization and thus reveals directional
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features in the spatio-spectral domain. The more directional the window function,

the more directional features it can reveal in the spatio-spectral domain but this

tends to increase the maximum spherical harmonic degree Lh. Recall that the

maximum degree of the directional SLSHT distribution components is given by

Lg = Lf + Lh. Thus, when the signal is expressed in the spatio-spectral domain

its spectral extent is extended by Lh, which results in spectral leakage. Therefore,

we want the window function to be simultaneously maximally localized in some

spatial region R ⊂ S2 and have the minimum possible band-limit which achieves

the desired level of energy concentration in the spatial region R.

Here, we propose using a band-limited eigenfunction obtained from the solution

of the Slepian concentration problem [27] as a window function, concentrated in a

spatially localized elliptical region around the north pole. We first parameterize the

elliptical region and later analyze the resulting eigenfunctions from the perspective

of the uncertainty principle on the sphere [90]. We note that the choice of the

asymmetric region as an elliptical region is only one possibility and the analysis

can be extended to other asymmetric regions such as strip regions around the north

pole [86].

6.4.1 Parametrization of Window Function

We consider a band-limited window function of maximum spherical harmonic de-

gree Lh, which is spatially concentrated in the elliptical region on the sphere with

major axis along the x-axis, and thus is orientated along the x-axis. The elliptical

region can be parameterized using the focus colatitude θc of the ellipse along the

positive x-axis and the arc length a of the semi-major axis:

R(θc,a) ,
{

(θ, φ) : 4s

(
(θ, φ), (θc, 0)

)
+4s

(
(θ, φ), (θc, π)

)
≤ 2a

}
, (6.19)

where 0 ≤ θc ≤ a ≤ π/2. Here 4s

(
(θ, φ), (θ′, φ′)

)
= arccos

(
sin θ sin θ′ cos(φ−φ′)+

cos θ cos θ′
)

denotes the angular distance between two points (θ, φ) and (θ′, φ′) on

the sphere. We note that the elliptical region defined in (6.19) takes into account

the angular distances and should not be confused with the projection of an ellipse

in the tangent space into S2.

Remark 6.7 For a given focus θc, the region becomes more directional as the arc

length a approaches θc from π/2. For a = π/2, the region becomes azimuthally
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(a)

(b)

(c)

Figure 6.1: Band-limited eigenfunction windows h on the sphere with 90% spatial
concentration in an elliptical region R(θc,a) of focus θc = π/6 and major axis: (a)
a = π/6 + π/80, (b) a = π/6 + π/120 and (c) a = π/6 + π/240.
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Figure 6.2: The maximum eigenvalue λmax corresponding to the eigenfunction h,
obtained as a solution of Slepian concentration problem on the sphere, with spher-
ical harmonic band-limit L for spatial concentration in an elliptical region of focus
θc = π/6 and major axis a as indicated. Black vertical lines indicate the bound on
the band-limit Bh given by (6.20) and the gray vertical lines indicate the actual Lh
which ensures 90% concentration in an elliptical region.

symmetric, i.e., we recover the polar cap of central angle π/2. Also, when θc = 0,

the region becomes azimuthally symmetric (polar cap) of central angle a.

6.4.2 Slepian Concentration Problem

As a result of the Slepian concentration problem [27, 86] to find the band-limited

function with bandwidth Lh and maximal spatial concentration in an elliptical

region R(θc,a), we obtain (Lh + 1)2 eigenfunctions. Due to the symmetry of the

elliptical region about the x-y plane, the eigenfunctions are real valued [86]. The

eigenvalue associated with each eigenfunction serves as a measure of the energy

concentration in the spatial region. Here we consider the use of the band-limited

eigenfunction with maximum energy concentration in the elliptical region for given

band-limit Lh and refer to such an eigenfunction as the eigenfunction window.

If A denotes the area of the elliptical region, it is shown [27, 86] that most of

the eigenvalues lie either near zero or unity for both symmetric and asymmetric

regions and the sum of all eigenvalues, referred as an equivalent of the Shannon

number [27], is equal to N0 = A(Lh + 1)2/(4π). Also, it is shown empirically
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in [1] that there exist no more than N0 − 1 spatially concentrated eigenfunctions

with significant energy concentration. By noting these developments and empirical

results, and considering that Lh must be chosen so that we obtain at least one

eigenfunction that is spatially concentrated in the elliptical region, we recover the

following empirical lower bound for Lh:

Lh & Bh = 2

⌈√
2π

A

⌉
− 1, A =

∫

R(θc,a)

ds(x̂), (6.20)

where d (·) e denotes the integer ceiling function (this bound follows directly from

N0 & 2). We analyze this bound later in this section.

Let λmax denote the eigenvalue associated with the most spatially concentrated

eigenfunction. By finding the minimum value of Lh which ensures that λmax is

greater than or equal to the desired energy concentration, an eigenfunction win-

dow h(x̂) with desired energy concentration in the elliptical region and minimum

possible band-limit Lh can be obtained. Thus, the focus of an elliptical region θc,

arc length of semi-major axis a and maximum spectral degree Lh fully parameterize

the eigenfunction window. As an illustration, the three eigenfunction windows hav-

ing 90% spatial concentration in the elliptical regions R(θc,a) with focus θc = π/6

and a ∈ {π/6 + π/240, π/6 + π/120, π/6 + π/80} and respective maximum spher-

ical harmonic degree Lh ∈ {18, 14, 11} are shown in Fig. 6.1. For these elliptical

regions, in Fig. 6.2 we show λmax versus spherical harmonic band-limit L denoting

the band-limit of the most concentrated eigenfunction window, where we note the

difference in Lh and the bound Bh for the desired concentration level. For a de-

sired concentration level of 90%, we observe that the spherical harmonic degree Lh

which ensures λmax ≥ 0.9 deviates further from the bound Bh given by (6.20) as

the concentration region becomes more directional (as expected since the bound

does not incorporate the level of directionality of the region).

6.4.3 Analysis of Eigenfunction Window Concentrated in

Elliptical Region

6.4.3.1 Directionality

For the use of the eigenfunction window in obtaining the directional SLSHT dis-

tribution, the directionality of the eigenfunction window must be a key criterion in
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selecting the eigenfunction window for the identification of localized features of a

signal in the spatio-spectral domain. We use the definition of the auto-correlation

function on the sphere as a measure of the directionality of the eigenfunction win-

dow [16, 29]. The auto-correlation function is defined as the inner product of the

eigenfunction window with its version rotated around the z-axis:

Ch(ς) = 〈Dρ1h, h〉 , ρ1 = (0, 0, ς), ς ∈ [0,
π

2
], (6.21)

which can be expressed in the harmonic domain as

Ch(ς) =

Lh∑

`=0

∑̀

m=−`
eimς |

(
h
)
m
` |2. (6.22)

Due to the symmetry of the elliptical region and the eigenfunction window about

the major axis (x-axis) and minor axis (y-axis), we have considered ς in the range

of 0 to π/2.

For the eigenfunction windows presented in the previous subsection, the auto-

correlation function for each window is shown in Fig. 6.3, which indicates that

Ch(ς) decays more rapidly from unity at ς = 0 for more directional windows and

therefore, the peakedness of Ch(ς) quantifies the ability of the window function to

spatially localize the directional features of a signal.

6.4.3.2 Spatial and Spectral Localization

Here we study the spatial and spectral localization of eigenfunction windows from

the perspective of the uncertainty principle on the sphere [78, 90], according to

which, the function cannot be simultaneously localized in both the spatial and

spectral domains. The following inequality specifies the uncertainty principle for

unit energy functions defined on the sphere, which relates the trade-off between

the spatial and spectral localization of a function:

σS√
1− σ2

S

· σL ≥ 1, (6.23)

where σS and σL denote the variance of the band-limited unit energy eigenfunction

window in the spatial domain and spectral domain respectively and are defined
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Figure 6.3: Auto-correlation function Ch(ς) as described in (6.21) for eigenfunction
windows h with spatial concentration in an elliptical region of focus θc = π/6 and
major axis a as indicated.

as [78]

σ2
S = 1−

(
1

2

∫

S2
sin(2θ)

∣∣h(θ, φ)
∣∣2 dθdφ

)2

(6.24)

and

σ2
L =

Lh∑

`=0

`(`+ 1)
∑̀

m=−`
|hm` |2. (6.25)

Due to the consideration of unit energy functions, 0 ≤ σS ≤ 1. We note that

smaller variance indicates better localization of the window function. The variance

in the spatial and spectral domains and the uncertainty product for eigenfunctions

concentrated in an elliptical region of focus π/6 and major-axis of different values

are shown in Fig. 6.4. As expected, the variance in the spatial domain decreases as

the region becomes more directional, whereas the variance in the spectral domain

increases because Lh increases. We also note that the uncertainty product increases

as the region becomes more directional.
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Figure 6.4: Spatial variance (20σ2
S), spectral variance (σ2

L) and uncertainty product,
as described in (6.23), (6.24) and (6.25), are shown for eigenfunctions with spatial
concentration in an elliptical region of focus θc = π/6 and major axis a as indicated.

6.5 Results

In this section, we first demonstrate the numerical validation and computation time

of our algorithms to evaluate the directional SLSHT components. Later, we provide

an example to illustrate the capability of the directional SLSHT, showing that it

probes out the directional features of signals in the spatio-spectral domain. The

implementation of the our algorithms is carried out in MATLAB, using the MATLAB

interface of the SSHT3 package (the core algorithms of which are written in C and

which also uses the FFTW4 package to compute Fourier transforms) to efficiently

compute forward and inverse spherical harmonic transforms [41].

6.5.1 Numerical Validation and Computation Time

In order to evaluate the numerical accuracy and the computation time, we carry

out the following numerical experiment. We use the band-limited function h for

spatial localization with band-limit Lh = 18 and spatial localization in the region

R(π/6,π/6+π/240). We generate band-limited test signals with band-limits 18 ≤ Lf ≤
130 by generating spherical harmonic coefficients with real and imaginary parts

3http://www.jasonmcewen.org/
4http://www.fftw.org/
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Figure 6.5: Numerical validation and computation time of the proposed algorithms.
Computation time in seconds: (a) τ1 (b) τ2 and (c) τ3. For fixed Lh, τ1 evolves as
O(L3

f ) and both τ2 and τ3 scale as O(L2
f ) as shown by the solid red lines (without

markers). (d) The maximum error ε, which empirically appears to scale as O(L),
as shown by the solid red line.

uniformly distributed in the interval [0, 1].

For the given test signal, we measure the computation time τ1 to evaluate spher-

ical harmonic transform of the modulated signal, i.e., (fY m
` )qp for p ≤ Lh, q ≤ |p|

and for all ` ≤ Lf + Lh, m ≤ |`|, using the method presented in Section 6.3.2.

Given the spherical harmonic transform of the modulated signal, we then measure

the computation time τ2 to compute all directional SLSHT distribution compo-

nents g(ρ; `,m) for ` ≤ Lf + Lh and m ≤ |`| using our fast algorithm presented in

Section 6.3.2, where we compute the Wigner-d functions on-the-fly for the argu-

ment π/2 by using the recursion of Trapani [88]. We also record the computation

time τ3 to recover a signal from its SLSHT distribution components. All numerical

experiments are performed using MATLAB running on a 2.4 GHz Intel Xeon proces-
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(a) f1 (b) f2 (c) f

Figure 6.6: (a) Spectrally truncated unit energy normalized Earth topographic
map f1 and (b) signal f2 composed of higher degree spherical harmonics localized
in elliptical regions. (c) Weighted sum of f1 and f2 as defined in (6.27).

sor with 64 GB of RAM and the results are averaged over ten test signals. The

computation time τ1 and τ2 are plotted against the band-limit Lf of the test signal

in Fig. 6.5a and Fig. 6.5b, which respectively evolve as O(L3
f ) and O(L2

f ) for fixed

Lh and thus corroborate the theoretical complexity. The computation time τ3 for

the inverse directional SLSHT is plotted in Fig. 6.5c, which scales as O(L2
f ) for

fixed Lh, again supporting the theoretical complexity.

We reconstruct the original signal from its SLSHT distribution components

using (6.6) and (6.3), in order to assess the numerical accuracy of our algorithms

by measuring the maximum absolute error between the original spherical harmonic

coefficients of the test signal and the reconstructed values. The maximum absolute

error is plotted in Fig. 6.5d for different band-limits Lf , which illustrates that our

algorithms achieve very good numerical accuracy with numerical errors at the level

of floating point precision.

6.5.2 Directional SLSHT Illustration

In this subsection, we provide examples to illustrate the capability of the proposed

transform to reveal the localized contribution of spectral contents and probe direc-

tional features in the spatio-spectral domain.

6.5.2.1 Example 1 - Synthetic Data Set

We first construct a signal having localized contribution of higher degree spectral

contents and then analyze the signal using proposed directional SLSHT. Let signal

f1 be the spectrally truncated, unit energy normalized Earth topographic map

with band-limit Lf1 = 30, which is obtained by using spherical harmonic model

of topography of Earth and is shown in Fig. 6.6a. Also consider the signal f2
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composed of higher degree spherical harmonics localized in two non-overlapping

elliptical regions with different orientation. We obtain such a signal f2 by spectrally

truncating the following signal f̃2 with in the band-limit Lf2 = 128,

f̃2(x̂) =





45∑
`=40

(
Y 20
` (x̂) + Y −20

` (x̂)
)
x̂ ∈ R = R1 ∪R1

0 x̂ ∈ S2 \ R,
(6.26)

where R1 and R2 are the elliptical regions of the form R(π/6,π/6+π/240), respectively

rotated by (π/2, π/2, 0) ∈ SO(3) and (3π/2, π/2, π/2) ∈ SO(3). The unit energy

normalized signal f2 is shown in Fig. 6.6b. We note that the regions R1 and R2

have orientation along colatitude and longitude respectively.

We analyze the following synthetic signal using the proposed transform

f(x̂) = 103 ×
(
f1(x̂)

‖f1‖
+
f2(x̂)

4‖f2‖

)
, (6.27)

which can be considered as a sum of a low frequency signal and a high frequency

localized signal. The signal f is shown in Fig. 6.6c, where it can be observed that

the information cannot be obtained about the presence of higher degree spherical

harmonics localized in different directional regions. Furthermore, the spherical

harmonic coefficients provide details about the presence of higher degree spherical

harmonics in the signal, but do not reveal any information about the localized

contribution of higher degree spherical harmonics.

If we analyze the signal by employing the SLSHT using an azimuthally sym-

metric window function, the presence of localized contributions of higher degree

spectral contents can be determined in the spatio-spectral domain as we illustrated

in Chapter 4. However, the presence of directional features cannot be extracted.

Here, we illustrate that the use of the directional SLSHT enables the identification

of directional features in the spatio-spectral domain, which is due to the consider-

ation of an asymmetric window function for spatial localization.

We obtain the directional SLSHT distribution components g(ρ; `,m) of the

signal f using the band-limited eigenfunction window h with Lh = 18 and 90%

concentration in the spatial domain in an elliptical region R(π/6,π/6+π/240). The

magnitude of the SLSHT distribution components g(ρ; `,m) for order m = 20 and

for degrees ` ∈ {41, 43, 45} are shown in Fig. 6.7 for Euler angle (a) γ = 0 and (b)
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(a)

(b)

(c)

(d)

Figure 6.7: Magnitude of the components of the directional SLSHT distribution
of the synthetic signal shown in Fig. 6.6c. For fixed orientation γ of the window
function around the z-axis, the distribution components g(ρ; `,m) are mapped on
the sphere using ρ = (φ, θ, γ) for order m = 20. The components are shown
for degrees ` ∈ {41, 43, 45} and for orientations (a) γ = 0 and (b) γ ≈ π/2 of
the window function around the z-axis, and the components are shown for degrees
` ∈ {21, 23, 25} and for orientation (c) γ = 0 and (d) γ ≈ π/2. Top left: g(ρ; 41, 20),
top right: g(ρ; 45, 20).

γ = 100π/201 ≈ π/2, and for degrees ` ∈ {21, 23, 25}, the components are shown

for (c) γ = 0 and (d) γ ≈ π/2. Since the elliptical region is oriented along the
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Figure 6.8: Mars signal in the spatial domain. The grand canyon Valles Marineris
and the mountainous regions of Tharsis Montes and Olympus Mons are indicated.

x-axis, the window with orientation γ = 0 provides localization along colatitude

and the window with orientation γ ≈ π/2 provides localization along longitude. It

can be observed that the localized contribution of higher degree directional spec-

tral contents is extracted in spatio-spectral domain. The localized higher degree

directional features along the orientation γ = 0 and γ ≈ π/2 are revealed in

the spatio-spectral domain as shown in Fig. 6.7a and Fig. 6.7b respectively, which

are not visible in lower degree distribution components as shown in Fig. 6.7c and

Fig. 6.7d.

As demonstrated, the proposed directional SLSHT is capable of probing lo-

calized directional spectral content. We further illustrate the capability of our

proposed transform by analyzing the Mars topographic map in the spatio-spectral

domain.

6.5.2.2 Example 2 - Mars Data Set

We consider the Mars topographic map (height above geoid) as a signal on the

sphere, which is obtained by using the spherical harmonic model of the topography
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(a)

(b)

Figure 6.9: Magnitude of the components of the directional SLSHT distribution
of the Mars signal obtained using the eigenfunction window concentrated in an
elliptical region of focus θc = π/12 and major axis a = 7π/12. For fixed orientation
ω, the distribution components g(ρ; `,m) are mapped on the sphere using ρ =
(φ, θ, ω) for order m = 15 and degree 20 ≤ ` ≤ 25. The components are shown for
orientation (a) ω = 0 and (b) ω ≈ π/2 of the window function around the z-axis.
Top left: g(ρ; 20, 15), top right: g(ρ; 22, 15).

of Mars5. The Mars topographic map is shown in Fig. 6.8 in the spatial domain,

where the grand canyon Valles Marineris and the mountainous regions of Tharsis

5http://www.ipgp.fr/~wieczor/SH/
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Montes and Olympus Mons are shown, indicating the presence of high frequency

contents. We note that the mountainous regions are non-directional features of the

Mars map, whereas the grand canyon serves as a directional feature with direction

oriented along a line of approximate constant latitude. The spherical harmonic

coefficients provide details about the presence of higher degree spherical harmonics

in the signal, but do not reveal any information about the localized contribution

of higher degree spherical harmonics, meaning that the spherical harmonic coeffi-

cients do not directly enlighten the information about the the spatial localization

of spectral contents.

We obtain the directional SLSHT distribution components g(ρ; `,m) of the

Mars map f using the band-limited eigenfunction window h with Lh = 60 and

90% concentration in the spatial domain in an elliptical region R(π/12,7π/12). The

magnitude of the SLSHT distribution components g(ρ; `,m) for order m = 15

and degrees 20 ≤ ` ≤ 25 and 50 ≤ ` ≤ 55 are shown in Fig. 6.9 and Fig. 6.10

respectively, where the components in the panels are for Euler angles (a) ω = 0

and (b) ω = 100π/201 ≈ π/2. Since the elliptical region is oriented along the

x-axis, the window with orientation ω = 0 provides localization along colatitude

and the window with orientation ω ≈ π/2 provides localization along longitude. It

is evident that using orientation of the window ω ≈ π/2 probes the information

about the grand canyon Valles Marineris (directional feature) along longitude in

the spatio-spectral domain. The localized contribution of higher degree spherical

harmonics towards the mountainous region can also be observed in Fig. 6.9 for

degree 20 ≤ ` ≤ 25 and both ω = 0 and ω = π/2. However, there is not significant

contribution of spherical harmonics of degree 50 ≤ ` ≤ 55 towards the mountainous

region as indicated in Fig. 6.10a where ω = 0, but the localization of the directional

features along the orientation ω ≈ π/2 are revealed in the spatio-spectral domain

as shown in Fig. 6.10b. Due to the ability of the directional SLSHT to reveal the

localized contribution of spectral contents and the directional or oriented features

in the spatio-spectral domain, it can be useful in many applications where the

signal on the sphere is localized in position and orientation.
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(a)

(b)

Figure 6.10: Magnitude of the components of the directional SLSHT distribution
of the Mars signal obtained using the eigenfunction window concentrated in an
elliptical region of focus θc = π/12 and major axis a = 7π/12. For fixed orientation
ω, the distribution components g(ρ; `,m) are mapped on the sphere using ρ =
(φ, θ, ω) for order m = 15 and degree 50 ≤ ` ≤ 55. The components are shown for
orientation (a) ω = 0 and (b) ω ≈ π/2 of the window function around z-axis. Top
left: g(ρ; 50, 15), top right: g(ρ; 52, 15).

6.6 Summary of Contributions

In this chapter, we have presented the directional SLSHT to project a signal on the

sphere onto its joint spatio-spectral domain as a directional SLSHT distribution.
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The directional SLSHT has been defined as localized spherical harmonic transform,

where we have proposed the use of an azimuthally asymmetric window function to

obtain SO(3) spatial localization, which enables the transform to resolve directional

features in the spatio-spectral domain. The contributions made in this chapter are

as follows.

Addressing Q8 posed in Section 1.2.1:

• Extending the SLSHT distribution formulated in Chapter 4, here, we have

presented directional SLSHT to obtain such a spatio-spectral representation

that reveals the localized contribution of directional features in the spatio-

spectral domain. We have also provided the harmonic analysis of directional

SLSHT and presented an inversion relation to synthesize the original signal

from its directional SLSHT distribution.

• We have analyzed the band-limited window function obtained from the Slepian

concentration problem on the sphere, with nominal concentration in an ellip-

tical region around the north pole.

• We provided an illustration which highlighted the capability of the directional

SLSHT to reveal directional features in the spatio-spectral domain.

Addressing Q9 posed in Section 1.2.1:

• We have developed a fast algorithm for the efficient computation of the di-

rectional SLSHT distribution of a signal. The computational complexity of

the proposed fast algorithm to evaluate SLSHT distribution of a signal with

band-limit Lf using window function with band-limit Lh is O(L3
fL

2
h +L2

fL
4
h)

as compared to the complexity of direct evaluation, which is O(L4
fL

3
h).

• We have also studied the numerical accuracy and the speed of our fast algo-

rithm and shown that the simulation results corroborate theoretically evalu-

ated computational complexities.



Chapter 7

Conclusions and Future Research

Directions

In this chapter we summarize the general conclusions drawn from this thesis. The

summary of specific contributions can be found at the end of each chapter and are

not repeated here. We also outline some future research directions arising from

this work.

7.1 Conclusions

This thesis has been primarily concerned with the development of new signal pro-

cessing techniques and the extension of existing theories to analyze signals defined

on the sphere.

First, in Chapter 3, we have considered the problem to define and formulate

convolution on the sphere in a manner that serves as direct analog of the Euclidean

domain convolution. In contrast to the existing definitions of convolution, we

have formulated convolution on the sphere which is commutative in nature, admits

anisotropic filter and produces an output that remains on the sphere.

In the second part of the thesis, from Chapter 4 to Chapter 6, we focussed

on analysis of signals on the sphere in a joint spatio-spectral domain. Analogous

to the STFT in time-frequency analysis, we developed the SLSHT, composed of

spatial windowing followed by a spherical harmonic transform, to obtain the spatio-

spectral representation of the signal. It has been shown that the spatio-spectral

representation, herein, referred to as the SLSHT distribution represents the spa-

tially varying spectral contents and therefore reveals information about the local-

121
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ization of spectral contents which cannot be directly obtained from the spectral

domain representation of a signal. Since the SLSHT distribution relies on a win-

dow function for spatial localization, different window functions have been studied

from the perspective of the uncertainty principle. Noting that the eigenfunction

obtained from the Slepian concentration problem on the sphere attains the lower

bound imposed by uncertainty principle, we have proposed to use this eigenfunction

as window function in obtaining SLSHT distribution of a signal. New uncertainty

principles, which relate the concentration of a signal in spatial and spectral domain,

have also been derived.

Earlier, in Chapter 4, we used azimuthally symmetric window functions for

spatial localization in order to parameterize the SLSHT distribution on S2. Later,

we extended the development of the SLSHT in Chapter 6, where an azimuthally

asymmetric window function is used for spatial localization and the spatio-spectral

representation is referred to as the directional SLSHT distribution. The use of

an asymmetric window function enables the SLSHT to also reveal localization of

directional features in the spatio-spectral domain. Due to the fact the rotation is

fully characterized by the consideration of all three Euler angles, the asymmetric

window provides SO(3) spatial localization and therefore the directional SLSHT

distribution is parameterized on SO(3) instead of S2. Since the data-sets on the

sphere may be of large size, and the SLSHT distribution of a signal must be com-

puted for each spatial position and for each spectral component, we have developed

fast algorithms for efficient computation of the SLSHT distribution.

The spatially localized spherical harmonic transform (SLSHT) distribution, rep-

resenting the spatially-varying spectrum of a signal on the unit sphere, presents a

mechanism to transform, modify and filter the signal in the joint spatio-spectral

domain to realize spatially varying spectral filtering. As in the time-frequency anal-

ogy, such a transformation in the spatio-spectral domain can lead to a modified

distribution that is not the SLSHT distribution of a physically valid spatial signal.

Therefore, we formulated and solved an optimization problem to find the closest

physically valid signal to the modified SLHT distribution. We illustrated two types

of transformation to the SLSHT distribution, multiplicative modification and con-

volutive modification, both being instances of a general linear integral operator. It

has been shown that the proposed framework enables the processing of signals in

the joint spatio-spectral domain in a way that cannot be accomplished separately
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in either spatial or spectral domain.

7.2 Future Research Directions

A number of interesting future research directions arise from the work presented

in this thesis.

• The capability of the SLSHT distribution to reveal localized contribution of

spectral contents depends on the window function being used for spatial lo-

calization. Considering that there exists a localization trade-off for a window

function in the spatial and spectral domains, the choice of window function

affects the resulting SLSHT distribution. Use of the same window function

to achieve localization for all spatial positions may not be adequate to find

what spectral components exist at different spatial positions. Lower spatial

resolution window should be used in the region of lower degree spectral com-

ponents. Higher spatial resolution window must be employed in the region

that contains localized higher degree spectral components in order to dis-

tinguish spatially varying spectral components at different spatial positions.

Therefore, there is a need to investigate the use of different resolution window

functions at different spatial positions to achieve localization, such that the

resolution of the window function adapts to the characteristics of the signal

being analyzed. An analogous problem is well known in time-frequency anal-

ysis [99–101], where it has been shown that, according to several different

measures of performance, the optimal window function for STFT depends on

the signal being analyzed.

• In this thesis, we have studied the SLSHT distribution as spatio-spectral

representation of signals on the sphere. The SLSHT has been formulated

in analogy with the STFT in time-frequency analysis. There exist more

sophisticated, different types of time-frequency distributions in the literature

with different properties [65]. Potentially, these existing techniques need to

extended and tailored for signals on the sphere. For example, the ambiguity

function for signals on the sphere formulated in [102] can be used to develop a

general class of spatio-spectral distributions for signals on the sphere similar

to the Cohen class of time-frequency distributions [64,65].
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• In Chapter 5, we presented a framework for transformation of signals in the

spatio-spectral domain. There are natural generalizations of the proposed

framework. The technique we developed to recover a spectral response of a

valid signal on the unit sphere from a modified SLSHT distribution is not lim-

ited to linear transformations in the spatio-spectral domain. Since there exist

efficient computational techniques to exactly evaluate the spherical harmonic

transform of the the band-limited signals [31,41], we have considered the sig-

nal in the spectral domain in the proposed mathematical developments and

formulations. We consider the development of efficient computational tech-

niques to do signal processing in spatio-spectral domain an open problem for

further work.

• The problem of optimal filtering on the sphere has been investigated in

[25, 103] and applied in [104] for the detection of bubble collision signa-

tures in WMAP 7-year observations [82]. Following the explorations and

research on the filtering of Euclidean signals in the time-frequency domain

using STFT [105], the proposed SLSHT distribution can be used to formu-

late the optimal filtering in the joint spatio-spectral domain for signals on

the sphere.



Appendix A

A.1 Proof of Theorem 5.1 (Least Squares Solu-

tion)

We take the derivative of the total error E in (5.8) with respect to the u-th element

of d,
(
d
)
u, and set it to zero

∂E

∂
(
d
)
u

=

∫

S2

Ng∑

n=0

∂
∣∣e(x̂;n)

∣∣2

∂
(
d
)
u

ds(x̂) = 0.

Now using e(x̂;n) , v(x̂;n) − Ψn,:(x̂)d = v(x̂;n) −∑Nf
u=0 Ψn,u(x̂)

(
d
)
u and rear-

ranging the terms results in

∫

S2

Ng∑

n=0

Nf∑

u′=0

Ψn,u(x̂)Ψn,u′(x̂)
(
d
)
u′ ds(x̂) =

∫

S2

Ng∑

n=0

Ψn,u(x̂)v(x̂;n) ds(x̂),

which can be written in matrix form as

(∫

S2
ΨH(x̂) Ψ(x̂) ds(x̂)

)

︸ ︷︷ ︸
M

d =

∫

S2
ΨH(x̂)v(x̂) ds(x̂), (A.1)

from which (5.10) becomes clear. Now, let us examine the entries of M in more

detail

Mu,u′ =

Ng∑

n=0

∫

S2
ψn,u(x̂)ψn,u′(x̂) ds(x̂). (A.2)
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Upon using the definition of the elements of Ψ in (4.12), we obtain

Mu,u′ =

Ng∑

n=0

Nh∑

r=0

Nh∑

r′=0

T (u; r;n)T (u′; r′;n)

∫

S2

(
h
)
r(x̂)

(
h
)
r′(x̂) ds(x̂),

which can be simplified using (2.31) and employing the orthonormal property of

spherical harmonics

Mu,u′ =

Ng∑

n=0

Lh∑

p=0

p∑

q=−p

4π

2p+ 1

∣∣(h
)

0
p

∣∣2 T (u; r;n)T (u′; r;n),

where the mapping (p, q) ↔ r has been used. Now using T (u; r;n) = T (u; r;n),

the additional mapping (s′, t′)↔ u′ and (2.24) we arrive at

Mu,u′ =

Lg∑

`=0

Lh∑

p=0

(2`+ 1)
√

(2s+ 1)(2s′ + 1)
∣∣(h
)

0
p

∣∣2
(
s p `

0 0 0

)(
s′ p `

0 0 0

)

∑̀

m=−`

p∑

q=−p

(
s p `

t q −m

)(
s′ p `

t′ q −m

)
.

Now we invoke the following orthogonality relation of Wigner-3j symbols [106],

(2s+ 1)
∑̀

m=−`

p∑

q=−p

(
s p `

t q −m

)(
s′ p `

t′ q −m

)
= δs,s′ δt,t′ , (A.3)

to conclude that Mu,u′ is only non-zero when s = s′ and t = t′ or when u = u′,

that is,

Mu,u =

Lg∑

`=0

Lh∑

p=0

(2`+ 1)
∣∣(h
)

0
p

∣∣2
(
s p `

0 0 0

)2

=

Lh∑

p=0

∣∣(h
)

0
p

∣∣2, (A.4)

where the following identity of Wigner-3j symbols is employed in obtaining the

second equality [106]

Lg∑

`=0

(2`+ 1)

(
s p `

0 0 0

)2

= 1, 0 ≤ p ≤ Lh, 0 ≤ s ≤ Lf . (A.5)

We note here that the entries of the matrix M given by (A.4) also appeared

in [1,58] as the sum of the rows of the coupling matrix (see [58] for details). With

the entries of the matrix M in (A.4), M becomes identity matrix scaled by the
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energy of the window function defined in (5.11) and Theorem 5.1 is proved.

�

A.2 Proof of Lemmas 5.1-5.3

Proof of Lemma 5.1

From the definition of MMD in (5.16) and using the inversion relation presented

in Theorem 4.1, we conclude that the n-th component of d can be obtained as

(
d
)
n =

1√
4π
(
h
)

0
0

∫

S2
g(x̂;n) z(x̂;n) ds(x̂).

Using the spherical harmonic expansion z(x̂;n) =
∑Nzn

c=0

(
zn
)
cYc(x̂), the SLSHT

distribution formulation in (4.7) and the orthogonality relation of spherical har-

monics, we obtain

(
d
)
n =

1√
4π
(
h
)

0
0

Nf∑

u=0

(
f
)
u

min(Nh,Nzn )∑

r=0

√
4π

2p+ 1

(
h
)

0
p

(
zn
)
r T (u; r;n), (p, q)↔ r.

(A.6)

Now according to (3.7),

(
wn
)
r ,

√
4π

2p+ 1

(
h
)

0
p

(
zn
)
r, (p, q)↔ r (A.7)

can be understood as the spherical harmonic coefficient of the convolution output

between z(x̂;n) and the azimuthally symmetric window function h(x̂). Hence, we

can express
(
d
)
n in (A.6) as

(
d
)
n =

1√
4π
(
h
)

0

Nf∑

u=0

(
f
)
u

min(Nh,Nzn )∑

r=0

(
wn
)
r T (u; r;n). (A.8)

Now using the expression for T (u; r;n) on the right hand side of (2.23), f(x̂) =
∑Nf

u=0

(
f
)
uYu(x̂), and wn(x̂) =

∑Nf
u=0

(
wn
)
rYr(x̂) we obtain the stated result in

Lemma 5.1.

Proof of Lemma 5.2

Proof of Lemma 5.2 is easy. First, according to (5.17) and (4.10)

v(x̂) = z(x̂)� g(x̂) = z(x̂)�
(
Ψ(x̂)f

)
=
(
diag

(
z(x̂)

)
Ψ(x̂)

)
f . (A.9)
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Therefore, according to Theorem 4.1 we can write the the spectral response of

signal d(x̂), d, corresponding to v(x̂) as

d =
1

K

∫

S2
v(x̂) ds(x̂) =

( 1

K

∫

S2

(
diag

(
z(x̂)

)
Ψ(x̂)

)
ds(x̂)

)
f .

By comparison with (5.12) we conclude (5.20).

Equation (5.21) follows from using (4.6), (4.12), z(x̂;u) =
∑Nzu

c=0

(
zu
)
cYc(x̂),

and orthogonality relation of spherical harmonics. This was also implied in (A.7)

and (A.8) in the proof of Lemma 5.1.

Proof of Lemma 5.3

We first use (5.15) in (5.13) and the the sifting property of Dirac delta function to

arrive at (5.22). For obtaining the entries of Υ, we proceed as follows. From (4.6)

and (4.12), we know that

ψHu,n(x̂) = ψn,u(x̂) =

Nh∑

r=0

√
4π

2p+ 1
Yr(x̂)

(
h
)

0
p T (u; r;n), (p, q)↔ r, (A.10)

ψn,u′(x̂) =

Nh∑

r′=0

√
4π

2p′ + 1
Yr′(x̂)

(
h
)

0
p′T (u′; r′;n), (p′, q′)↔ r′. (A.11)

Upon using the above, z(x̂;n) =
∑Nzn

c=0

(
zn
)
cYc(x̂) in (5.22), we obtain

Υu,u′ =
1

E

Ng∑

n=0

Nh∑

r=0

Nh∑

r′=0

Nzn∑

c=0

4π√
(2p+ 1)(2p′ + 1)

(
h
)

0
p

(
h
)

0
p′

(
zn
)
c

× T (u; r;n)T (u′; r′;n)

∫

S2
Yr(x̂)Yc(x̂)Yr′(x̂) ds(x̂). (A.12)

Finally, recalling T (u; r;n) = T (u; r;n) and the definition (2.23) for the integral in

(A.12), we obtain

Υu,u′ =
1

E

Ng∑

n=0

Nh∑

r=0

Nh∑

r′=0

Nzn∑

c=0

4π√
(2p+ 1)(2p′ + 1)

(
h
)

0
p

(
h
)

0
p′

(
zn
)
c

× T (u; r;n)T (u′; r′;n)T (r; c; r′), (A.13)

which is identical to (5.23).
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A. N. Lasenby, E. Mart́ınez-González, and J. L. Sanz, “Cosmological appli-

cations of a wavelet analysis on the sphere,” J. Fourier Anal. and Appl., vol.

13, no. 4, pp. 495–510, Aug. 2007.

[14] J. D. McEwen, M. P. Hobson, A. N. Lasenby, and D. J. Mortlock, “A

high-significance detection of non-Gaussianity in the Wilkinson Microwave

Anisotropy Probe 1-yr data using directional spherical wavelets,” Mon. Not.

R. Astron. Soc., vol. 359, no. 4, pp. 1583–1596, 2005.

[15] J.-L. Starck, Y. Moudden, P. Abrial, and M. Nguyen, “Wavelets, ridgelets

and curvelets on the sphere,” Astron. & Astrophys., vol. 446, no. 3, pp.

1191–1204, Feb. 2006.

[16] Y. Wiaux, L. Jacques, and P. Vandergheynst, “Correspondence principle

between spherical and Euclidean wavelets,” Astrophys. J., vol. 632, no. 1,

pp. 15–28, Oct. 2005.
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